Skip to main content

Advertisement

Log in

Inhibition of BRAF kinase suppresses cellular proliferation, but not enough for complete growth arrest in BRAF V600E mutated papillary and undifferentiated thyroid carcinomas

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The aim of our study was to inhibit BRAF kinase expression and investigate its effect on cellular functions in thyroid carcinomas. 8505C (BRAF V600E/V600E) undifferentiated thyroid carcinoma cell line and B-CPAP (BRAF V600E/V600E) papillary thyroid carcinoma cell line were used to develop doxycycline-inducible anti-BRAF shRNA stable cell lines. The inhibitions of BRAF expression in these cells were confirmed with qPCR and Western blot. Impacts of BRAF protein inhibition on cellular functions and signalling pathways were observed through Western blot, proliferation and colony formation assays. BRAF kinase expression was inhibited 83 % in undifferentiated thyroid carcinoma and 82 % in papillary thyroid carcinoma (p < 0.05). As a result of BRAF kinase inhibition, reduction in MEK kinase activity was seen (p < 0.05) in both thyroid cancer cell lines (72 and 75 %, respectively). Initially, big drop in proliferation (p < 0.05) was observed (52 and 54 %, respectively), but later an increasing proliferation trend was noticed in BRAF kinase-inhibited cell lines. In addition, reduction in colony formation (p < 0.05) was seen in BRAF kinase-inhibited carcinoma cells (13 and 15 %, respectively). On the other hand, increase in AKT kinase activity (63 and 70 %, respectively; p < 0.05) was discovered in both BRAF kinase-inhibited carcinoma cells. Increased activation of alternative proliferation pathways (as determined by the increase of AKT kinase activity) counteracts the effect of BRAF kinase inhibition in thyroid carcinomas. Thus, alternative proliferation pathways should be inhibited for therapeutic suppression of BRAF-induced proliferation in thyroid carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Davies, G.R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin, M.J. Garnett, W. Bottomley, N. Davis, E. Dicks, R. Ewing, Y. Floyd, K. Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A. Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S. Hooper, R. Wilson, H. Jayatilake, B.A. Gusterson, C. Cooper, J. Shipley, D. Hargrave, K. Pritchard-Jones, N. Maitland, G. Chenevix-Trench, G.J. Riggins, D.D. Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson, J.W. Ho, S.Y. Leung, S.T. Yuen, B.L. Weber, H.F. Seigler, T.L. Darrow, H. Paterson, R. Marais, C.J. Marshall, R. Wooster, M.R. Stratton, P.A. Futreal, Mutations of the BRAF gene in human cancer. Nature. 417, 949–954 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. M.A. Rahman, A. Salajegheh, R.A. Smith, A.K. Lam, B-Raf mutation: a key player in molecular biology of cancer. Exp. Mol. Pathol. 95, 336–342 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. S. Pakneshan, A. Salajegheh, R.A. Smith, A.K. Lam, Clinicopathological relevance of BRAF mutations in human cancer. Pathology. 45, 346–356 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. M.A. Rahman, A. Salajegheh, R.A. Smith, A.K. Lam, BRAF inhibitor therapy for melanoma, thyroid and colorectal cancers: development of resistance and future prospects. Curr. Cancer Drug Targets. 14, 128–143 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. M.A. Rahman, A. Salajegheh, R.A. Smith, A.K. Lam, BRAF inhibitors: from the laboratory to clinical trials. Crit. Rev. Oncol. 90, 220–232 (2014)

    Article  CAS  Google Scholar 

  6. Y. Cohen, M. Xing, E. Mambo, Z. Guo, G. Wu, B. Trink, U. Beller, W.H. Westra, P.W. Ladenson, D. Sidransky, BRAF mutation in papillary thyroid carcinoma. J. Natl. Cancer Inst. 95, 625–627 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. M.A. Rahman, A. Salajegheh, R.A. Smith, A.K. Lam, Multiple proliferation-survival signalling pathways are simultaneously active in BRAF V600E mutated thyroid carcinomas. Exp. Mol. Pathol. 99, 492–497 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. M. Xing, BRAF mutation in thyroid cancer. Endocr. Relat. Cancer. 12, 245–262 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. R.A. Smith, A. Salajegheh, S. Weinstein, M. Nassiri, A.K. Lam, Correlation between BRAF mutation and the clinicopathological parameters in papillary thyroid carcinoma with particular reference to follicular variant. Hum. Pathol. 42, 500–506 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. A.K. Lam, C.Y. Lo, K.S. Lam, Papillary carcinoma of thyroid: a 30-year clinicopathological review of the histological variants. Endocr. Pathol. 16, 323–330 (2005)

    Article  PubMed  Google Scholar 

  11. M. Xing, A.S. Alzahrani, K.A. Carson, Y.K. Shong, T.Y. Kim, D. Viola, R. Elisei, B. Bendlová, L. Yip, C. Mian, F. Vianello, R.M. Tuttle, E. Robenshtok, J.A. Fagin, E. Puxeddu, L. Fugazzola, A. Czarniecka, B. Jarzab, C.J. O’Neill, M.S. Sywak, A.K. Lam, G. Riesco-Eizaguirre, P. Santisteban, H. Nakayama, R. Clifton-Bligh, G. Tallini, E.H. Holt, V. Sýkorová, Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J. Clin. Oncol. 33, 42–50 (2015)

    Article  PubMed  Google Scholar 

  12. A. Salajegheh, H. Vosgha, M.A. Rahman, M. Amin, R.A. Smith, A.K. Lam, Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma. Hum. Pathol. 51, 75–85 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. C. Nucera, J. Lawler, R. Hodin, S. Parangi, The BRAFV600E mutation: what is it really orchestrating in thyroid cancer? Oncotarget. 1, 751–756 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  14. A. Salajegheh, E. Dolan-Evans, E. Sullivan, S. Irani, M.A. Rahman, H. Vosgha, V. Gopalan, R.A. Smith, A.K. Lam, The expression profiles of the galectin gene family in primary and metastatic papillary thyroid carcinoma with particular emphasis on galectin-1 and galectin-3 expression. Exp. Mol. Pathol. 96, 212–218 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. A. Salajegheh, S. Pakneshan, A. Rahman, E. Dolan-Evans, S. Zhang, E. Kwong, V. Gopalan, C.Y. Lo, R.A. Smith, A.K. Lam, Co-regulatory potential of vascular endothelial growth factor-A and vascular endothelial growth factor-C in thyroid carcinoma. Hum. Pathol. 44, 2204–2212 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. A. Salajegheh, H. Vosgha, M.A. Rahman, M. Amin, R.A. Smith, A.K. Lam, Modulatory role of miR-205 in angiogenesis and progression of thyroid cancer. J. Mol. Endocrinol. 55, 183–196 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. M.A. Rahman, A. Salajegheh, R.A. Smith, A.K. Lam, MicroRNA-126 suppresses proliferation of undifferentiated (BRAF and BRAF) thyroid carcinoma through targeting PIK3R2 gene and repressing PI3K-AKT proliferation-survival signalling pathway. Exp. Cell Res. 339, 342–350 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. B. Chen, C. Tardell, B. Higgins, K. Packman, J.F. Boylan, H. Niu, BRAFV600E negatively regulates the AKT pathway in melanoma cell lines. PLoS One. 7, e42598 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E.M. Coffee, A.C. Faber, J. Roper, M.J. Sinnamon, G. Goel, L. Keung, W.V. Wang, L. Vecchione, V. de Vriendt, B.J. Weinstein, R.T. Bronson, S. Tejpar, R.J. Xavier, J.A. Engelman, E.S. Martin, K.E. Hung, Concomitant BRAF and PI3K/mTOR blockade is required for effective treatment of BRAF(V600E) colorectal cancer. Clin. Cancer Res. 19, 2688–2698 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. J.G. Greger, S.D. Eastman, V. Zhang, M.R. Bleam, A.M. Hughes, K.N. Smitheman, S.H. Dickerson, S.G. Laquerre, L. Liu, T.M. Gilmer, Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol. Cancer Ther. 11, 909–920 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. A. Prahallad, C. Sun, S. Huang, F. Di Nicolantonio, R. Salazar, D. Zecchin, R.L. Beijersbergen, A. Bardelli, R. Bernards, Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 483, 100–103 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. L. Liu, Y. Cao, C. Chen, X. Zhang, A. McNabola, D. Wilkie, S. Wilhelm, M. Lynch, C. Carter, Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66, 11851–11858 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. C. Montero-Conde, S. Ruiz-Llorente, J.M. Dominguez, J.A. Knauf, A. Viale, E.J. Sherman, M. Ryder, R.A. Ghossein, N. Rosen, J.A. Fagin, Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 3, 520–533 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J.A. McCubrey, L.S. Steelman, S.L. Abrams, J.T. Lee, F. Chang, F.E. Bertrand, P.M. Navolanic, D.M. Terrian, R.A. Franklin, A.B. D’Assoro, J.L. Salisbury, M.C. Mazzarino, F. Stivala, M. Libra, Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv. Enzyme Regul. 46, 249–279 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. S. Barollo, L. Bertazza, E. Baldini, S. Ulisse, E. Cavedon, M. Boscaro, R. Pezzani, C. Mian, The combination of RAF265, SB590885, ZSTK474 on thyroid cancer cell lines deeply impact on proliferation and MAPK and PI3K/Akt signaling pathways. Invest. New Drugs. 32, 626–635 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. B.D. Manning, L.C. Cantley, AKT/PKB signaling: navigating downstream. Cell. 129, 1261–1274 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J.A. McCubrey, L.S. Steelman, W.H. Chappell, S.L. Abrams, E.W. Wong, F. Chang, B. Lehmann, D.M. Terrian, M. Milella, A. Tafuri, F. Stivala, M. Libra, J. Basecke, C. Evangelisti, A.M. Martelli, R.A. Franklin, Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta. 1773, 1263–1284 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. A. De Luca, M.R. Maiello, A. D’Alessio, M. Pergameno, N. Normanno, The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets. 16(Suppl 2), S17–S27 (2012)

    Article  PubMed  Google Scholar 

  29. I. Shiojima, K. Walsh, Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 90, 1243–1250 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. P.R. Somanath, O.V. Razorenova, J. Chen, T.V. Byzova, Akt1 in endothelial cell and angiogenesis. Cell Cycle. 5, 512–518 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Villanueva, A. Vultur, J.T. Lee, R. Somasundaram, M. Fukunaga-Kalabis, A.K. Cipolla, B. Wubbenhorst, X. Xu, P.A. Gimotty, D. Kee, A.E. Santiago-Walker, R. Letrero, K. D’Andrea, A. Pushparajan, J.E. Hayden, K.D. Brown, S. Laquerre, G.A. McArthur, J.A. Sosman, K.L. Nathanson, M. Herlyn, Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 18, 683–695 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. K.Y. Lam, C.Y. Lo, K.W. Chan, K.Y. Wan, Insular and anaplastic carcinoma of the thyroid: a 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann. Surg. 231, 329–338 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are obliged to all research associates in Cancer Molecular Pathology Group, Menzies Health Institute Queensland and Griffith University. This research was completed with the support of higher degree research funding from Griffith University and the project Grants from Menzies Health Institute Queensland, Griffith University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred King-yin Lam.

Ethics declarations

Conflict of interest

The authors would like to declare that there is no conflict of interest in the publication of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.A., Salajegheh, A., Smith, R.A. et al. Inhibition of BRAF kinase suppresses cellular proliferation, but not enough for complete growth arrest in BRAF V600E mutated papillary and undifferentiated thyroid carcinomas. Endocrine 54, 129–138 (2016). https://doi.org/10.1007/s12020-016-0985-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0985-7

Keywords

Navigation