Skip to main content

Estimation of the Level of Abasic Sites in Plant mRNA Using Aldehyde Reactive Probe

  • Protocol
  • First Online:
Reactive Oxygen Species in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2526))

Abstract

Oxidation of RNA is associated with the development of numerous disorders including Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis (ALS), cancer, and diabetes. Additionally, a correlation has been found between increase in RNA oxidation and the process of aging. In plants, elevated level of oxidatively modified transcripts has been detected during alleviation of seeds dormancy and stress response. Increasing interest on the topic of RNA oxidative modifications requires elaboration of new laboratory techniques. So far, the most common method used for the assessment of RNA oxidation is quantification of 8-hydroxyguanine (8-OHG). However, reactive oxygen species (ROS) induce also numerous other changes in nucleic acids, including formation of abasic sites (AP-sites). Recently, the level of AP-sites in RNA has been measured with the use Aldehyde Reactive Probe (ARP). In the present chapter, we describe application of this technique for the evaluation of the level of AP-sites in plant transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP-sites:

abasic sites

ARP:

Aldehyde Reactive Probe

ROS:

reactive oxygen species

References

  1. Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V (2020) The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front Plant Sci 11:552969. https://doi.org/10.3389/fpls.2020.552969

    Article  PubMed  Google Scholar 

  2. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309. https://doi.org/10.1016/j.tplants.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  3. Chmielowska-Bąk J, Izbiańska K, Deckert J (2015) Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants. Front Plant Sci 6:405. https://doi.org/10.3389/fpls.2015.00405

    Article  PubMed  PubMed Central  Google Scholar 

  4. Poulsen HE, Specht E, Broedbaek K, Henriksen T, Ellervik C, Mandrup-Poulsen T, Tonnesen M, Nielsen PE, Andersen HU, Weimann A (2012) RNA modifications by oxidation: a novel disease mechanism? Free Radical Biol Med 52:1353–1361. https://doi.org/10.1016/j.freeradbiomed.2012.01.009

    Article  CAS  Google Scholar 

  5. Li Z, Chen X, Liu Z, Ye W, Li L, Qian L, Ding H, Li P, Aung LHH (2020) Recent advances: molecular mechanism of RNA oxidation and its role in various disease. Front Mol Biosci 7:184. https://doi.org/10.3389/fmolb.2020.00184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23:2196–2208. https://doi.org/10.1105/tpc.111.086694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao F, Rampitsch C, Chitnis VR, Humphreys GD, Jordan MC, Ayele BT (2013) Integrated analysis of seed proteome and mRNA oxidation reveals distinct post-transcriptional features regulating dormancy in wheat (Triticum aesativum L.). Plant Biotechnol J 11:921–932. https://doi.org/10.1111/pbi.12083

    Article  CAS  PubMed  Google Scholar 

  8. Chmielowska-Bąk J, Izbiańska K, Ekner-Grzyb A, Bayar M, Deckert J (2018) Cadmium stress leads to rapid increase in RNA oxidative modifications in soybean seedlings. Front Plant Sci 8:2219. https://doi.org/10.3389/fpls.2017.02219

    Article  PubMed  PubMed Central  Google Scholar 

  9. Labudda M, Różańska E, Czarnocka W, Sobczak M, Dzik JM (2018) Systemic changes in photosynthesis and reactive oxygen species homeostasis in shoots of Arabidopsis thaliana infected with the beet cyst nematode Heterodera schachtii. Mol Plant Pathol 19:1690–1704. https://doi.org/10.1111/mpp.12652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sytykiewicz H, Łukasik I, Goławska S, Chrzanowski G (2019) Aphid-triggered changes in oxidative damage markers of nucleic acids, proteins, and lipids in maize (Zea mays L.) seedlings. Int J Mol Sci 20:3742. https://doi.org/10.3390/ijms20153742

    Article  CAS  PubMed Central  Google Scholar 

  11. Shan X, Tashiro H, Lin CG (2003) The identification and characterization of oxidized RNAs in Alzheimer’s disease. J Neurosci 23:4913–4921. https://doi.org/10.1523/JNEUROSCI.23-12-04913.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang Y, Kong Q, Shan X, Tian G, Llieva H, Cleveland DW, Rothstein JD, Borchelt DR, Wong P, Lin CG (2008) Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One 3:e2849. https://doi.org/10.1371/journal.pone.0002849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pappas-Gogos G, Tellis CC, Tepelenis K, Vlachos K, Chrysos E, Tselepis AD, Glantzounis GK (2021) Urine 8-hydroxyguanine (8-OHG) in patients undergoing surgery for colorectal cancer. J Investig Surg 3(8):e2849. https://doi.org/10.1080/08941939.2021.1904466

    Article  Google Scholar 

  14. Berquist BR, Wilson DM III (2012) Pathways of repairing and tolerating the spectrum of oxidative DNA lesions. Cancer Lett 327:61–72. https://doi.org/10.1016/j.canlet.2012.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mikowska M, Świergosz-Kowalewska R (2018) DNA damage in liver tissues of metal exposed Clethrionomys glareolus. Chemosphere 199:625–629. https://doi.org/10.1016/j.chemosphere.2018.02.053

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Cui Z, Hejazi L, Yao L, Walmsley SJ, Rizzo CJ, Turesky RJ (2020) Kinetics of DNA adducts and abasic site formation in tissue of mice treated with nitrogen mustard. Chem Res Toxicol 33:988–998. https://doi.org/10.1021/acs.chemrestox.0c00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakamura T, Keep RF, Hua Y, Nagao S, Hoff JT, Xi G (2006) Iron-induced oxidative brain injury after experimental intracerebral hemorrhage. Acta Neurochir 96:194–198. https://doi.org/10.1007/3-211-30714-1_42

    Article  CAS  Google Scholar 

  18. Kubo K, Ide H, Wallace SS, Kow YW (1992) A novel, sensitive, and specific assay for abasic sites, the most commonly produced DNA lesion. Biochemistry 31:3703–3708. https://doi.org/10.1021/bi00129a020

    Article  CAS  PubMed  Google Scholar 

  19. Asaeda A, Ide H, Tano K, Takamori Y, Kubo K (2006) Repair kinetics of abasic sites in mammalian cells monitored by the aldehyde reactive probe (ARP). Nucleos Nucleot Nucl 17:503–513. https://doi.org/10.1080/07328319808005194

    Article  Google Scholar 

  20. Atamna H, Cheung I, Ames BN (2000) A method for detecting abasic sites in living cells: age-dependent changes in base excision repair. Proc Natl Acad Sci 97:686–691. https://doi.org/10.1073/pnas.97.2.686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin P-H, Nakamura J, Yamaguchi S, Asakura S, Swenberg JA (2003) Aldehydic DNA lesions induced by catechol estrogens in calf thymus DNA. Carcinogenesis 24:1133–1141. https://doi.org/10.1093/carcin/bgg049

    Article  CAS  PubMed  Google Scholar 

  22. McDorman KC, Pachkowski BF, Nakamura J, Wolf DC, Swenberg JA (2005) Oxidative DNA damage from potassium bromate exposure in Long-Evans rats is not enhanced by a mixture of drinking water disinfection by-products. Chemico-Biol Interact 152:107–117. https://doi.org/10.1016/j.cbi.2005.02.003

    Article  CAS  Google Scholar 

  23. Viswesh V, Gates K, Sun D (2010) Characterization of DNA damage induced by natural product antitumor antibiotic leinamycin in human cancer cells. Chem Res Toxicol 23:99–107. https://doi.org/10.1021/tx900301r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tanaka M, Song H, Küpfer PA, Leuman CJ, Sonntag WE (2011) An assay for RNA oxidation induced abasic sites using the Aldehyde Reactive Probe. Free Radic Res 45:237–247. https://doi.org/10.3109/10715762.2010.535529

    Article  CAS  PubMed  Google Scholar 

  25. Chomczyński P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. https://doi.org/10.1006/abio.1987.9999

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The method has been applied in research project number 2014/13/D/NZ9/04812 financed by the National Science Center, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagna Chmielowska-Bąk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chmielowska-Bąk, J., Izbiańska-Jankowska, K., Deckert, J. (2022). Estimation of the Level of Abasic Sites in Plant mRNA Using Aldehyde Reactive Probe. In: Mhamdi, A. (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2469-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2469-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2468-5

  • Online ISBN: 978-1-0716-2469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics