Skip to main content

Quantitative Analysis for ROS-Producing Activity and Regulation of Plant NADPH Oxidases in HEK293T Cells

  • Protocol
  • First Online:
Reactive Oxygen Species in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2526))

Abstract

Reactive oxygen species (ROS) produced by plant NADPH oxidases, respiratory burst oxidase homologs (RBOHs), play key roles in biotic and abiotic stress responses and development in plants. While properly controlled amounts of ROS function as signaling molecules, excessive accumulation of ROS can cause undesirable side effects due to their ability to oxidize DNA, lipids, and proteins. To limit the damaging consequences of unrestricted ROS accumulation, RBOH activity is tightly controlled by post-translational modifications (PTMs) and protein-protein interactions. In order to analyze these elaborate regulatory mechanisms, it is crucial to quantitatively assess the ROS-producing activity of RBOHs. Given the high endogenous ROS generation in plants, however, it can be challenging in plant cells to measure ROS production derived from specific RBOHs and to analyze the contribution of regulatory events for their activation and inactivation. Here we describe human embryonic kidney 293T (HEK293T) cells as a heterologous expression system and a useful tool to quantitatively monitor ROS production by RBOHs. This system permits the reconstitution of regulatory events to dissect the effects of Ca2+, phosphorylation, and protein-protein interactions on RBOH-dependent ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236. https://doi.org/10.1146/annurev-arplant-042817-040322

    Article  CAS  PubMed  Google Scholar 

  2. Kärkönen A, Kuchitsu K (2015) Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112:22–32. https://doi.org/10.1016/j.phytochem.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  3. Groom QJ, Torres MA, Fordham-Skelton AP et al (1996) rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10:515–522. https://doi.org/10.1046/j.1365-313X.1996.10030515.x

    Article  CAS  PubMed  Google Scholar 

  4. Keller T, Damude HG, Werner D et al (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266. https://doi.org/10.1105/tpc.10.2.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suzuki N, Miller G, Morales J et al (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699. https://doi.org/10.1016/j.pbi.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  6. Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol 38:1118–1126. https://doi.org/10.1093/oxfordjournals.pcp.a029096

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H, Zhang F, Xia Y et al (2010) Excess copper induces production of hydrogen peroxide in the leaf of Elsholtzia haichowensis through apoplastic and symplastic CuZn-superoxide dismutase. J Hazard Mater 178:834–843. https://doi.org/10.1016/j.jhazmat.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  8. Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214. https://doi.org/10.1111/nph.15488

    Article  CAS  PubMed  Google Scholar 

  9. Chapman JM, Muhlemann JK, Gayomba SR et al (2019) RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem Res Toxicol 32:370–396. https://doi.org/10.1021/acs.chemrestox.9b00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu CH, Wang PQ, Zhang PP et al (2020) NADPH Oxidases: The vital performers and center hubs during plant growth and signaling. Cells 9:437. https://doi.org/10.3390/cells9020437

    Article  CAS  PubMed Central  Google Scholar 

  11. Kadota Y, Liebrand TWH, Goto Y et al (2019) Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol 221:2160–2175. https://doi.org/10.1111/nph.15523

    Article  CAS  PubMed  Google Scholar 

  12. Kimura S, Hunter K, Vaahtera L et al (2020) CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. Plant Cell 32:1063–1080. https://doi.org/10.1105/tpc.19.00525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen J, Zhang J, Zhou M et al (2020) Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 32:1000–1017. https://doi.org/10.1105/tpc.19.00826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee DH, Lal NK, Lin ZJD et al (2020) Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat Commun 11:1838. https://doi.org/10.1038/s41467-020-15601-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaya H, Iwano M, Takeda S et al (2015) Apoplastic ROS production upon pollination by RbohH and RbohJ in Arabidopsis. Plant Signal Behav 10:3–6. https://doi.org/10.4161/15592324.2014.989050

    Article  CAS  Google Scholar 

  16. Fichman Y, Miller G, Mittler R (2019) Whole-plant live imaging of reactive oxygen species. Mol Plant 12:1203–1210. https://doi.org/10.1016/j.molp.2019.06.003

    Article  CAS  PubMed  Google Scholar 

  17. Trujillo M (2016) Analysis of the lmmunity-related oxidative bursts by a luminol-based assay. Methods Mol Biol 1398:323–329. https://doi.org/10.1007/978-1-4939-3356-3_26

    Article  CAS  PubMed  Google Scholar 

  18. Camejo D, Guzmán-Cedeño Á, Moreno A (2016) Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol Biochem 103:10–23. https://doi.org/10.1016/j.plaphy.2016.02.035

    Article  CAS  PubMed  Google Scholar 

  19. Mignolet-Spruyt L, Xu E, Idänheimo N et al (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844. https://doi.org/10.1093/jxb/erw080

    Article  CAS  PubMed  Google Scholar 

  20. Shang-Guan K, Wang M, Htwe NMPS et al (2018) Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations. Plant Physiol 176:2543–2556. https://doi.org/10.1104/pp.17.01637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bánfi B, Molnár G, Maturana A et al (2001) A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601. https://doi.org/10.1074/jbc.M103034200

    Article  PubMed  Google Scholar 

  22. Bánfi B, Malgrange B, Knisz J et al (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072. https://doi.org/10.1074/jbc.M403046200

    Article  CAS  PubMed  Google Scholar 

  23. Dao VTV, Elbatreek MH, Altenhöfer S et al (2020) Isoform-selective NADPH oxidase inhibitor panel for pharmacological target validation. Free Radic Biol Med 148:60–69. https://doi.org/10.1016/j.freeradbiomed.2019.12.038

    Article  CAS  PubMed  Google Scholar 

  24. Shiose A, Kuroda J, Tsuruya K et al (2001) A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 276:1417–1423. https://doi.org/10.1074/jbc.M007597200

    Article  CAS  PubMed  Google Scholar 

  25. Ogasawara Y, Kaya H, Hiraoka G et al (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892. https://doi.org/10.1074/jbc.M708106200

    Article  CAS  PubMed  Google Scholar 

  26. Takeda S, Gapper C, Kaya H et al (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244. https://doi.org/10.1126/science.1152505

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi S, Kimura S, Kaya H et al (2012) Reactive oxygen species production and activation mechanism of the rice NADPH oxidase OsRbohB. J Biochem 152:37–43. https://doi.org/10.1093/jb/mvs044

    Article  CAS  PubMed  Google Scholar 

  28. Kimura S, Kaya H, Kawarazaki T et al (2012) Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim Biophys Acta 1823:398–405. https://doi.org/10.1016/j.bbamcr.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  29. Kaya H, Nakajima R, Iwano M et al (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26:1069–1080. https://doi.org/10.1105/tpc.113.120642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaya H, Takeda S, Kobayashi MJ et al (2019) Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases. Plant J 98:291–300. https://doi.org/10.1111/tpj.14212

    Article  CAS  PubMed  Google Scholar 

  31. Kawarazaki T, Kimura S, Iizuka A et al (2013) A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF. Biochim Biophys Acta 1833:2775–2780. https://doi.org/10.1016/j.bbamcr.2013.06.024

    Article  CAS  PubMed  Google Scholar 

  32. Kimura S, Kawarazaki T, Nibori H et al (2013) The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system. J Biochem 153:191–195. https://doi.org/10.1093/jb/mvs132

    Article  CAS  PubMed  Google Scholar 

  33. Drerup MM, Schlücking K, Hashimoto K et al (2013) The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6:559–569. https://doi.org/10.1093/mp/sst009

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, Köster P, Schlücking K et al (2018) CBL1-CIPK26-mediated phosphorylation enhances activity of the NADPH oxidase RBOHC, but is dispensable for root hair growth. FEBS Lett 592:2582–2593. https://doi.org/10.1002/1873-3468.13187

    Article  CAS  PubMed  Google Scholar 

  35. Han JP, Köster P, Drerup MM et al (2019) Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca2+ binding. New Phytol 221:1935–1949. https://doi.org/10.1111/nph.15543

    Article  CAS  PubMed  Google Scholar 

  36. Fujita S, De Bellis D, Edel KH et al (2020) SCHENGEN receptor module drives localized ROS production and lignification in plant roots. EMBO J:1–18. https://doi.org/10.15252/embj.2019103894

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kimura, S., Kaya, H., Hashimoto, K., Wrzaczek, M., Kuchitsu, K. (2022). Quantitative Analysis for ROS-Producing Activity and Regulation of Plant NADPH Oxidases in HEK293T Cells. In: Mhamdi, A. (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2469-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2469-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2468-5

  • Online ISBN: 978-1-0716-2469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics