Skip to main content

Measurement of NAD(P)H and NADPH-Generating Enzymes

  • Protocol
  • First Online:
Reactive Oxygen Species in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2526))

Abstract

Pyridine nucleotides (NAD(H) and NADP(H)) are key redox carriers in cells and may also have other functions related to stress. These two molecules are crucial in linking metabolism to electron transport chains in photosynthesis and respiration, but they are also critical for ensuring redox signaling and homeostasis during episodes of stress. This is especially the case for NADPH, which must be generated from its oxidized form, NADP+, by key dehydrogenases. Here, we describe methods that can be used to assay contents and redox states of NAD(H) and NADP(H), as well as simple assays to measure the capacity of two key NADPH-generating enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astier J, Gross I, Durner J (2018) Nitric oxide production in plants: an update. J Exp Bot 69:3401–3411

    Article  CAS  Google Scholar 

  2. Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    Article  CAS  Google Scholar 

  3. Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell 22:376–391

    Article  CAS  Google Scholar 

  4. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  Google Scholar 

  5. Tuzet A, Rahantaniaina MS, Noctor G (2019) Analyzing the function of catalase and the ascorbate-glutathione pathway in H2O2 processing: insights from an experimentally constrained kinetic model. Antioxid Redox Signal 30:1238–1268

    Article  CAS  Google Scholar 

  6. Kasimova MR, Grigiene J, Krab K, Hagedorn PH, Flyvbjerg H, Andersen PE, Møller IM (2006) The free NADH concentration is kept constant in plant mitochondria under different metabolic conditions. Plant Cell 18:688–698

    Article  CAS  Google Scholar 

  7. Igamberdiev AU, Gardeström P (2003) Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Arch Biochem Biophys 1606:117–125

    CAS  Google Scholar 

  8. Takahama U, Shimizu-Takahama M, Heber U (1981) The redox state of the NADP system in illuminated chloroplasts. Biochim Biophys Acta 637:530–539

    Article  CAS  Google Scholar 

  9. Noctor G, Hager J, Li S (2011) NAD synthesis and its manipulation in plants. Adv Bot Res 58:153–201

    Article  CAS  Google Scholar 

  10. Pétriacq P, de Bont L, Hager J, Didierlaurent L, Mauve C, Guérard F, Noctor G, Pelletier S, Renou JP, Tcherkez G, Gakière B (2012) Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1. Plant J 70:650–665

    Article  Google Scholar 

  11. Dutilleul C, Lelarge C, Prioul JL, De Paepe R, Foyer CH, Noctor G (2005) Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Plant Physiol 134:64–78

    Article  Google Scholar 

  12. Harding SA, Oh SH, Roberts DM (1997) Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J 16:1137–1144

    Article  CAS  Google Scholar 

  13. Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocaña A, del Río LA, Barroso JB (2006) The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ 29:1449–1459

    Article  CAS  Google Scholar 

  14. Hodges M, Flesch V, Galvez S, Bismuth E (2003) Higher plant NADP-dependent isocitrate dehydrogenases, ammonium assimilation and NADPH production. Plant Physiol Biochem 41:577–585

    Article  CAS  Google Scholar 

  15. Mhamdi A, Mauve C, Gouia H, Saindrenan P, Hodges M, Noctor G (2010) Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. Plant Cell Environ 33:1112–1123

    CAS  PubMed  Google Scholar 

  16. Queval G, Noctor G (2007) A plate-reader method for the measurement of NAD, NADP, glutathione and ascorbate in tissue extracts. Application to redox profiling during Arabidopsis rosette development. Anal Biochem 363:58–69

    Article  CAS  Google Scholar 

  17. Monéger R, Vermeesch J, Lechevallier D, Richard C (1977) Micro-analyse du NADP et du NAD réduits et oxydés dans les tissus foliaires et dans les plastes isolés de Spirodèle et de Blé. Physiol Vég 15:29–62

    Google Scholar 

  18. Noctor G, Mhamdi A, Foyer CH (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ 39:1140–1160

    Article  CAS  Google Scholar 

  19. Hagedorn PH, Flyvbjerg H, Møller I (2007) Modelling NADH turnover in plant mitochondria. Physiol Plant 120:370–385

    Article  Google Scholar 

Download references

Acknowledgments

Work in the GN laboratory is supported by the French Agence Nationale de la Recherche HIPATH project (ANR-17-CE20-0025) and by the Institut Universitaire de France (IUF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amna Mhamdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mhamdi, A., Van Breusegem, F., Noctor, G. (2022). Measurement of NAD(P)H and NADPH-Generating Enzymes. In: Mhamdi, A. (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2469-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2469-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2468-5

  • Online ISBN: 978-1-0716-2469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics