Skip to main content

Studying Plant Stress Reactions In Vivo by PAM Chlorophyll Fluorescence Imaging

  • Protocol
  • First Online:
Reactive Oxygen Species in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2526))

  • 797 Accesses

Abstract

Plant photosynthetic and mitochondrial electron transfer chains (ETCs) are delicate environmental sensors and active players in stress acclimation. The performance of photosynthetic ETC can be deduced from chlorophyll a fluorescence. This makes chlorophyll fluorescence imaging a powerful tool to study plant stress in vivo. Many stress treatments enhance production of reactive oxygen species (ROS) by photosynthetic or mitochondrial ETCs. These ROS affect cellular metabolism and signalling. Generation of ROS can be manipulated in planta by specific pharmacological treatments with methyl viologen (MV), antimycin A (AA), myxothiazol (myx), and salicylhydroxamic acid (SHAM). This chapter describes how chlorophyll fluorescence imaging together with pharmacological treatments can be employed to probe ROS-dependent plant stress reactions in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjärvi J (2012) ROS-talk – how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci 3:292

    Article  CAS  Google Scholar 

  2. Stael S, Kmiecik P, Willems P, Van Der Kelen K, Coll NS, Teige M, Van Breusegem F (2015) Plant innate immunity – sunny side up? Trends Plant Sci 20:3–11

    Article  CAS  Google Scholar 

  3. Crawford T, Lehotai N, Strand Å (2018) The role of retrograde signals during plant stress responses. J Exp Bot 69:2783–2795

    Article  CAS  Google Scholar 

  4. Littlejohn GR, Breen S, Smirnoff N, Grant M (2020) Chloroplast immunity illuminated. New Phytol. https://doi.org/10.1111/nph.17076

  5. Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81–106

    Article  CAS  Google Scholar 

  6. Stirbet A, Lazár D, Guo Y, Govindjee G (2020) Photosynthesis: basics, history and modelling. Ann Bot 126:511–537

    Article  CAS  Google Scholar 

  7. Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–1916

    Article  CAS  Google Scholar 

  8. Rochaix JD (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309

    Article  CAS  Google Scholar 

  9. Rochaix JD, Lemeille S, Shapiguzov A, Samol I, Fucile G, Willig A, Goldschmidt-Clermont M (2012) Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Philos Trans R Soc Lond Ser B Biol Sci 367:3466–3474

    Article  CAS  Google Scholar 

  10. Göhre V, Jones AM, Sklenář J, Robatzek S, Weber AP (2012) Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Mol Plant-Microbe Interact 25:1083–1092

    Article  Google Scholar 

  11. Tikkanen M, Gollan PJ, Mekala NR, Isojärvi J, Aro EM (2014) Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism. Philos Trans R Soc Lond Ser B Biol Sci 369:20130229

    Article  Google Scholar 

  12. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  13. Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  Google Scholar 

  14. Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli D, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Article  CAS  Google Scholar 

  15. Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, Ferroni L, Goltsev V, Guidi L, Jajoo A, Li P, Losciale P, Mishra VK, Misra AN, Nebauer SG, Pancaldi S, Penella C, Pollastrini M, Suresh K, Tambussi E, Yanniccari M, Zivcak M, Cetner MD, Samborska IA, Stirbet A, Olsovska K, Kunderlikova K, Shelonzek H, Rusinowski S, Bąba W (2017) Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth Res 132:13–66

    Article  CAS  Google Scholar 

  16. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  17. Nedbal L, Soukupová J, Kaftan D, Whitmarsh J, Trtílek M (2000) Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynth Res 66:3–12

    Article  CAS  Google Scholar 

  18. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  19. Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    Article  CAS  Google Scholar 

  20. Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM (2017) Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 8:49

    Article  Google Scholar 

  21. Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta 1817:1127–1133

    Article  CAS  Google Scholar 

  22. Shapiguzov A, Vainonen JP, Hunter K, Tossavainen H, Tiwari A, Järvi S, Hellman M, Aarabi F, Alseekh S, Wybouw B, Van Der Kelen K, Nikkanen L, Krasensky-Wrzaczek J, Sipari N, Keinänen M, Tyystjärvi E, Rintamäki E, De Rybel B, Salojärvi J, Van Breusegem F, Fernie AR, Brosché M, Permi P, Aro EM, Wrzaczek M, Kangasjärvi J (2019) Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. elife 8:e43284

    Article  Google Scholar 

  23. De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW, Law SR, Inzé A, Ng S, Ivanova A, Rombaut D, van de Cotte B, Jaspers P, Van de Peer Y, Kangasjärvi J, Whelan J, Van Breusegem F (2013) The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25:3472–3490

    Article  Google Scholar 

  24. Ng S, Ivanova A, Duncan O, Law SR, Van Aken O, De Clercq I, Wang Y, Carrie C, Xu L, Kmiec B, Walker H, Van Breusegem F, Whelan J, Giraud E (2013) A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25:3450–3471

    Article  CAS  Google Scholar 

  25. Pfannschmidt T, Terry MJ, Van Aken O, Quiros PM (2020) Retrograde signals from endosymbiotic organelles: a common control principle in eukaryotic cells. Philos Trans R Soc Lond Ser B Biol Sci 375:20190396

    Article  CAS  Google Scholar 

  26. Shapiguzov A, Nikkanen L, Fitzpatrick D, Vainonen JP, Gossens R, Alseekh S, Aarabi F, Tiwari A, Blokhina O, Panzarová K, Benedikty Z, Tyystjärvi E, Fernie AR, Trtílek M, Aro EM, Rintamäki E, Kangasjärvi J (2020) Dissecting the interaction of photosynthetic electron transfer with mitochondrial signalling and hypoxic response in the Arabidopsis rcd1 mutant. Philos Trans R Soc Lond Ser B Biol Sci 375:20190413

    Article  CAS  Google Scholar 

  27. Jacques CN, Hulbert AK, Westenskow S, Neff MM (2020) Production location of the gelling agent Phytagel has a significant impact on Arabidopsis thaliana seedling phenotypic analysis. PLoS One 15:e0228515

    Article  CAS  Google Scholar 

  28. Weigel D, Glazebrook J (2006) Kanamycin selection of transformed arabidopsis. Cold Spring Harb Prot 2006:pdb.prot4669-pdb.prot4669

    Google Scholar 

  29. Lindsey BE 3rd, Rivero L, Calhoun CS, Grotewold E, Brkljacic J (2017) Standardized method for high-throughput sterilization of Arabidopsis seeds. J Vis Exp 128:56587

    Google Scholar 

  30. Li X (2011) Arabidopsis growing protocol – a general guide. Bio-Protocol 101:e126

    Google Scholar 

  31. van Kooten O, Snel JF (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  Google Scholar 

  32. Cui F, Brosché M, Shapiguzov A, He XQ, Vainonen JP, Leppälä J, Trotta A, Kangasjärvi S, Salojärvi J, Kangasjärvi J, Overmyer K (2019) Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis. Free Radic Biol Med 134:555–566

    Article  CAS  Google Scholar 

  33. Labs M, Rühle T, Leister D (2016) The antimycin A-sensitive pathway of cyclic electron flow: from 1963 to 2015. Photosynth Res 129:231–238

    Article  CAS  Google Scholar 

  34. Watanabe CK, Yamori W, Takahashi S, Terashima I, Noguchi K (2016) Mitochondrial alternative pathway-associated photoprotection of photosystem II is related to the photorespiratory pathway. Plant Cell Physiol 57:1426–1431

    Article  CAS  Google Scholar 

  35. Brouwer KS, van Valen T, Day DA, Lambers H (1986) Hydroxamate-stimulated O2 uptake in roots of Pisum sativum and Zea mays, mediated by a peroxidase: its consequences for respiration measurements. Plant Physiol 82:236–240

    Article  CAS  Google Scholar 

  36. Kerchev P, Mühlenbock P, Denecker J, Morreel K, Hoeberichts FA, Van Der Kelen K, Vandorpe M, Nguyen L, Audenaert D, Van Breusegem F (2015) Activation of auxin signalling counteracts photorespiratory H2O2-dependent cell death. Plant Cell Environ 38:253–265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Fuqiang Cui for his assistance in developing the leaf disc assays. We are grateful to Dr. Zuzana Benedikty for optimizing the FluorCam protocol and for revising the manuscript and to Dr. Erhard Pfündel, Dr. Mikael Brosché, and Tuomas Puukko for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Shapiguzov .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shapiguzov, A., Kangasjärvi, J. (2022). Studying Plant Stress Reactions In Vivo by PAM Chlorophyll Fluorescence Imaging. In: Mhamdi, A. (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2469-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2469-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2468-5

  • Online ISBN: 978-1-0716-2469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics