Skip to main content

Analysis of Ascorbate Metabolism in Arabidopsis Under High-Light Stress

  • Protocol
  • First Online:
Reactive Oxygen Species in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2526))

Abstract

Ascorbate is the most abundant soluble antioxidant in plants, and its concentration is enhanced under high-light and other abiotic stresses. One of the main functions of ascorbate is the detoxification of reactive oxygen species, as ascorbate-deficient plants are highly sensitive to high-light-induced photooxidative stress. Its antioxidative role in plants is further complemented by the presence of ascorbate peroxidases, as well as enzymes that recycle ascorbate from its oxidized forms. In parallel with ascorbate biosynthesis, the expression and activity of these enzymes are enhanced by photooxidative stress. Thus, ascorbate metabolism plays a key role in photooxidative stress acclimation. Herein, the present authors’ preferred protocols for the application of high-light stress and the measurement of ascorbate and the activity of related enzymes are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asada K (1999) THE WATER-WATER CYCLE IN CHLOROPLASTS: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. https://doi.org/10.1146/annurev.arplant.50.1.601

    Article  CAS  PubMed  Google Scholar 

  2. Mhamdi A, Noctor G, Baker A (2012) Plant catalases: peroxisomal redox guardians. Arch Biochem Biophys 525(2):181–194. https://doi.org/10.1016/j.abb.2012.04.015

    Article  CAS  PubMed  Google Scholar 

  3. Kerchev P, Waszczak C, Lewandowska A, Willems P, Shapiguzov A, Li Z, Alseekh S, Muhlenbock P, Hoeberichts FA, Huang J, Van Der Kelen K, Kangasjarvi J, Fernie AR, De Smet R, Van de Peer Y, Messens J, Van Breusegem F (2016) Lack of GLYCOLATE OXIDASE1, but not GLYCOLATE OXIDASE2, attenuates the photorespiratory phenotype of CATALASE2-deficient Arabidopsis. Plant Physiol 171(3):1704–1719. https://doi.org/10.1104/pp.16.00359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867. https://doi.org/10.1111/tpj.13299

    Article  CAS  PubMed  Google Scholar 

  5. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309. https://doi.org/10.1016/j.tplants.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  6. He H, Van Breusegem F, Mhamdi A (2018) Redox-dependent control of nuclear transcription in plants. J Exp Bot 69(14):3359–3372. https://doi.org/10.1093/jxb/ery130

    Article  CAS  PubMed  Google Scholar 

  7. Mhamdi A, Van Breusegem F (2018) Reactive oxygen species in plant development. Development 145(15). https://doi.org/10.1242/dev.164376

  8. Shigeoka S, Maruta T (2014) Cellular redox regulation, signaling, and stress response in plants. Biosci Biotechnol Biochem 78(9):1457–1470. https://doi.org/10.1080/09168451.2014.942254

    Article  CAS  PubMed  Google Scholar 

  9. Maruta T, Sawa Y, Shigeoka S, Ishikawa T (2016) Diversity and evolution of ascorbate peroxidase functions in chloroplasts: more than just a classical antioxidant enzyme? Plant Cell Physiol 57(7):1377–1386. https://doi.org/10.1093/pcp/pcv203

    Article  CAS  PubMed  Google Scholar 

  10. Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221(3):1197–1214. https://doi.org/10.1111/nph.15488

    Article  CAS  PubMed  Google Scholar 

  11. Smirnoff N (2018) Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radic Biol Med 122:116–129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gallie DR (2013) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64(2):433–443. https://doi.org/10.1093/jxb/ers330

    Article  CAS  PubMed  Google Scholar 

  13. Noctor G, Foyer CH (1998) ASCORBATE AND GLUTATHIONE: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. https://doi.org/10.1146/annurev.arplant.49.1.249

    Article  CAS  PubMed  Google Scholar 

  14. Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52(4):673–689. https://doi.org/10.1111/j.1365-313X.2007.03266.x

    Article  CAS  PubMed  Google Scholar 

  15. Terai Y, Ueno H, Ogawa T, Sawa Y, Miyagi A, Kawai-Yamada M, Ishikawa T, Maruta T (2020) Dehydroascorbate reductases and glutathione set a threshold for high-light-induced ascorbate accumulation. Plant Physiol 183(1):112–122. https://doi.org/10.1104/pp.19.01556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393(6683):365–369. https://doi.org/10.1038/30728

    Article  CAS  PubMed  Google Scholar 

  17. Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154(2):847–856

    Article  CAS  Google Scholar 

  18. Muller-Moule P, Havaux M, Niyogi KK (2003) Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiol 133(2):748–760. https://doi.org/10.1104/pp.103.026252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shiroma S, Tanaka M, Sasaki T, Ogawa T, Yoshimura K, Sawa Y, Maruta T, Ishikawa T (2019) Chloroplast development activates the expression of ascorbate biosynthesis-associated genes in Arabidopsis roots. Plant Sci 284:185–191. https://doi.org/10.1016/j.plantsci.2019.04.012

    Article  CAS  PubMed  Google Scholar 

  20. Noctor G, Mhamdi A, Foyer CH (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ 39(5):1140–1160. https://doi.org/10.1111/pce.12726

    Article  CAS  PubMed  Google Scholar 

  21. Kampfenkel K, Van Montagu M, Inze D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225(1):165–167. https://doi.org/10.1006/abio.1995.1127

    Article  CAS  PubMed  Google Scholar 

  22. Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283(43):28842–28851. https://doi.org/10.1074/jbc.M805538200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50(4):684–697. https://doi.org/10.1093/pcp/pcp034

    Article  CAS  PubMed  Google Scholar 

  24. Kono M, Yamori W, Suzuki Y, Terashima I (2017) Photoprotection of PSI by far-red light against the fluctuating light-induced photoinhibition in Arabidopsis thaliana and field-grown plants. Plant Cell Physiol 58(1):35–45. https://doi.org/10.1093/pcp/pcw215

    Article  CAS  PubMed  Google Scholar 

  25. Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2012) H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. J Biol Chem 287(15):11717–11729. https://doi.org/10.1074/jbc.M111.292847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43(6):900–914. https://doi.org/10.1111/j.1365-313X.2005.02503.x

    Article  CAS  PubMed  Google Scholar 

  27. Nakano Y, Asada K (1981) Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 18K19179 (T.M), 17H03807 (T.I. and T.M.), and 19K22284 (T.I. and T.M.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Maruta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maruta, T., Ishikawa, T. (2022). Analysis of Ascorbate Metabolism in Arabidopsis Under High-Light Stress. In: Mhamdi, A. (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2469-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2469-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2468-5

  • Online ISBN: 978-1-0716-2469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics