Skip to main content

Methods to Analyze the Redox Reactivity of Plant Proteins

  • Protocol
  • First Online:
Reactive Oxygen Species in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2526))

  • 667 Accesses

Abstract

Proteins can be covalently modified by a broad range of highly reactive chemicals and redox mechanisms. Reversible redox-mediated post-translational modifications of sensitive cysteine thiol groups in proteins impact protein characteristics such as interaction behavior and activity state. Evaluating the response of proteins to redox perturbation or reactive chemical species is critical for understanding the underlying mechanisms involved and their contribution to plant stress physiology. Here we provide a detailed workflow that includes procedures for (i) purification, processing, and analysis of protein samples with redox agents, (ii) determining redox-modulated monomer to oligomer transitions using size exclusion chromatography, and (iii) activity assays for monitoring the impact of redox agents on purified enzymes and in crude extracts from plants subjected to oxidative stress. We exemplified how to apply several of the methods discussed for analyzing redox-sensing metallopeptidases, such as thimet oligopeptidases. We anticipate that these protocols should find broad applications in monitoring biochemical properties of other classes of redox-sensitive plant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mock HP, Dietz KJ (2016) Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochim Biophys Acta (BBA)-Proteins Proteomics 1864:967–973

    Article  CAS  Google Scholar 

  2. Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P (2019) Redox homeostasis in photosynthetic organisms: novel and established thiol-based molecular mechanisms. Antioxid Redox Signal 31:155–210

    Article  CAS  Google Scholar 

  3. Wormuth D, Heiber I, Shaikali J, Kandlbinder A, Baier M, Dietz KJ (2007) Redox regulation and antioxidative defence in Arabidopsis leaves viewed from a systems biology perspective. J Biotechnol 129:229–248

    Article  CAS  Google Scholar 

  4. Sies H (2021) Oxidative eustress: on constant alert for redox homeostasis. Redox Biol 41:101867. https://doi.org/10.1016/j.redox.2021.101867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Mohanna T, Nejat N, Iannetta AA, Hicks LM, Popescu GV, Popescu SC (2021) Arabidopsis thimet oligopeptidases are redox-sensitive enzymes active in the local and systemic plant immune response. J Biol Chem 100695. https://doi.org/10.1016/j.jbc.2021.100695

  6. Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18:2087–2090

    Article  CAS  Google Scholar 

  7. Martins L, Trujillo-Hernandez JA, Reichheld JP (2018) Thiol based redox signaling in plant nucleus. Front Plant Sci 9:705

    Article  Google Scholar 

  8. Liebthal M, Maynard D, Dietz KJ (2018) Peroxiredoxins and redox signaling in plants. Antioxid Redox Signal 28:609–624

    Article  CAS  Google Scholar 

  9. Waszczak C, Akter S, Eeckhout D, Persiau G, Wahni K, Bodra N, Van Molle I, De Smet B, Vertommen D, Gevaert K, De Jaeger G, Van Montagu M, Messens J, Van Breusegem F (2014) Sulfenome mining in Arabidopsis thaliana. Proc Natl Acad Sci 111:11545–11550

    Article  CAS  Google Scholar 

  10. Akter S, Huang J, Bodra N, De Smet B, Wahni K, Rombaut D, Pauwels J, Gevaert K, Carroll K, Van Breusegem F, Messens J (2015) DYn-2 based identification of Arabidopsis sulfenomes. Mol Cell Proteomics 14:1183–1200

    Article  CAS  Google Scholar 

  11. McConnell EW, Berg P, Westlake TJ, Wilson KM, Popescu GV, Hicks LM, Popescu SC (2019) Proteome-wide analysis of cysteine reactivity during effector-triggered immunity. Plant Physiol 179:248–1264

    Article  Google Scholar 

  12. Leichert LI, Dick TP (2015) Incidence and physiological relevance of protein thiol switches. Biol Chem 396(nd):389–399. https://doi.org/10.1515/hsz-2014-0314

    Article  CAS  PubMed  Google Scholar 

  13. Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23. https://doi.org/10.1101/gad.1740009

  14. Westlake TJ, Ricci WA, Popescu GV, Popescu SC (2015) Dimerization and thiol sensitivity of the salicylic acid binding thimet oligopeptidases TOP1 and TOP2 define their functions in redox-sensitive cellular pathways. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00327

  15. Marshall PA, Dyer JM, Quick ME, Goodman JM (1996) Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division. J Cell Biol 135:123–137. https://doi.org/10.1083/jcb.135.1.123

    Article  CAS  PubMed  Google Scholar 

  16. Chan KX, Mabbitt PD, Phua SY, Mueller JW, Nisar N, Gigolashvili T, Stroeher E, Grassl J, Arlt W, Estavillo GM (2016) Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase. Proc Natl Acad Sci 113:E4567–E4576

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Díaz MG, Hernández-Verdeja T, Kremnev D, Crawford T, Dubreuil C, Strand Å (2018) Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana. Nat Commun 9:50. https://doi.org/10.1038/s41467-017-02468-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mhamdi A (2019) The immune redoxome: effector-triggered immunity switches cysteine oxidation profiles. Plant Physiol 179:1196–1197

    Article  CAS  Google Scholar 

  19. Bleau JR, Spoel SH (2021) Selective redox signaling shapes plant-pathogen interactions. Plant Physiol 27:53–65

    Article  Google Scholar 

  20. Fekete S, Beck A, Veuthey J-L, Guillarme D (2014) Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal 101:161–173. https://doi.org/10.1016/j.jpba.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  21. Iannetta AA, Holden TG, Al-Mohanna T, O’Brien JO, Wommack AJ, Popescu SC, Hicks LM (2021) Profiling thimet oligopeptidase-mediated proteolysis in Arabidopsis thaliana. Plant J 106:336–350

    Article  CAS  Google Scholar 

  22. Moreau M, Westlake T, Zampogna G, Popescu GV, Tian M, Noutsos C, Popescu SC (2013) The Arabidopsis oligopeptidases TOP 1 and TOP 2 are salicylic acid targets that modulate SA-mediated signaling and the immune response. Plant J 76:603–614

    Article  CAS  Google Scholar 

  23. Harris JL, Backes BJ, Leonetti F, Mahrus S, Ellman JA, Craik CS (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci 97:7754–7759

    Article  CAS  Google Scholar 

  24. Matthews DJ, Wells JA (1993) Substrate phage: selection of protease substrates by monovalent phage display. Science 260:1113–1117

    Article  CAS  Google Scholar 

  25. Packer MS, Rees HA, Liu DR (2017) Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat Commun 8:1–11

    Article  CAS  Google Scholar 

  26. Lapek JD, Jiang Z, Wozniak JM, Arutyunova E, Wang SC, Lemieux MJ, Gonzalez DJ, O’Donoghue AJ (2019) Quantitative multiplex substrate profiling of peptidases by mass spectrometry. Mol Cell Proteomics 18:968–981

    Article  CAS  Google Scholar 

  27. Hothorn T, Everitt BS (2014) A handbook of statistical analyses using R. CRC Press

    Book  Google Scholar 

  28. Štulı́k K, Pacáková V, Tichá M (2003) Some potentialities and drawbacks of contemporary size-exclusion chromatography. J Biochem Biophys Methods 56:1–13. https://doi.org/10.1016/S0165-022X(03)00053-8

    Article  CAS  PubMed  Google Scholar 

  29. Aryal UK, McBride Z, Chen D, Xie J, Szymanski DB (2017) Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling. J Proteomics 166:8–18

    Article  CAS  Google Scholar 

  30. Salas D, Stacey RG, Akinlaja M, Foster LJ (2020) Next-generation interactomics: considerations for the use of co-elution to measure protein interaction networks. Mol Cell Proteomics 19:1–10. https://doi.org/10.1074/mcp.R119.001803

    Article  CAS  PubMed  Google Scholar 

  31. Lai MC, Topp EM (1999) Solid-state chemical stability of proteins and peptides. J Pharm Sci 88:489–500

    Article  CAS  Google Scholar 

  32. Kuroda Y, Suenaga A, Sato Y, Kosuda S, Taiji M (2016) All-atom molecular dynamics analysis of multi-peptide systems reproduces peptide solubility in line with experimental observations. Sci Rep 6:19479

    Article  CAS  Google Scholar 

  33. Robinson PK (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41

    Article  Google Scholar 

  34. Olp MD, Kalous KS, Smith BC (2020) ICEKAT: an interactive online tool for calculating initial rates from continuous enzyme kinetic traces. BMC Bioinformatics 21:1–12

    Article  Google Scholar 

  35. Swift ML (1997) GraphPad prism, data analysis, and scientific graphing. J Chem Inf Comput Sci 37:411–412

    Article  CAS  Google Scholar 

  36. Zannini F, Couturier J, Keech O, Rouhier N (2017) In vitro alkylation methods for assessing the protein redox state. Photorespiration. Springer, pp 51–64

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding for this work from NSF-MCB 1714157 to SCP and GVP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorina C. Popescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Al-Mohanna, T., Popescu, G.V., Popescu, S.C. (2022). Methods to Analyze the Redox Reactivity of Plant Proteins. In: Mhamdi, A. (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2469-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2469-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2468-5

  • Online ISBN: 978-1-0716-2469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics