Skip to main content

In Vitro Biochemical Analysis of Recombinant Plant Proteins Under Oxidation

  • Protocol
  • First Online:
Reactive Oxygen Species in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2526))

Abstract

Biochemical analysis is crucial for determining protein functionality changes during various conditions, including oxidative stress conditions. In this chapter, after giving brief guidelines for experimental design, we provide step-by-step instructions to purify recombinant plant proteins from E. coli, to prepare reduced and oxidized proteins for activity assay, and to characterize the protein under reducing and oxidizing conditions, with a focus on thiol-based oxidative modifications, like S-sulfenylation and disulfide formations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang H, Ullah F, Zhou D-X et al (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    Article  Google Scholar 

  2. Sharma P, Jha AB, Dubey RS et al (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  3. Huang J, Willems P, Van Breusegem F et al (2018) Pathways crossing mammalian and plant sulfenomic landscapes. Free Radic Biol Med 122:193–201

    Article  CAS  Google Scholar 

  4. Jacques S, Ghesquière B, Van Breusegem F et al (2013) Plant proteins under oxidative attack. Proteomics 13(6):932–940

    Article  CAS  Google Scholar 

  5. Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187

    Article  Google Scholar 

  6. Willems P, Van Breusegem F, Huang J (2021) Contemporary proteomic strategies for cysteine redoxome profiling. Plant Physiol 186(1):110–124

    Article  CAS  Google Scholar 

  7. Kim D, Lim S, Haque MM et al (2015) Identification of disulfide cross-linked tau dimer responsible for tau propagation. Sci Rep 5(1):1–10

    Google Scholar 

  8. Liu XP, Liu XY, Zhang J et al (2006) Molecular and functional characterization of sulfiredoxin homologs from higher plants. Cell Res 16(3):287–296

    Article  CAS  Google Scholar 

  9. Yoshida K, Noguchi K, Motohashi K et al (2013) Systematic exploration of thioredoxin target proteins in plant mitochondria. Plant Cell Physiol 54(6):875–892

    Article  CAS  Google Scholar 

  10. Freudl R (2018) Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Factories 17(1):1–10

    Article  Google Scholar 

  11. Kallberg K, Johansson HO, Bulow L (2012) Multimodal chromatography: an efficient tool in downstream processing of proteins. Biotechnol J 7(12):1485–1495

    Article  CAS  Google Scholar 

  12. Labrou NE (2014) Protein purification: an overview. Protein Downstr Proc:3–10

    Google Scholar 

  13. Andersen T, Pepaj M, Trones R et al (2004) Isoelectric point separation of proteins by capillary pH-gradient ion-exchange chromatography. J Chromatogr A 1025(2):217–226

    Article  CAS  Google Scholar 

  14. Francis DM, Page R (2010) Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci 61(1):5.24.1–5.24.29

    Article  Google Scholar 

  15. Yin J, Li G, Ren X et al (2007) Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J Biotechnol 127(3):335–347

    Article  CAS  Google Scholar 

  16. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27(3):297–306

    Article  CAS  Google Scholar 

  17. Khambhati K, Bhattacharjee G, Gohil N et al (2019) Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Front Bioeng Biotechnol 7:248

    Article  Google Scholar 

  18. Gregorio NE, Levine MZ, Oza JP (2019) A user’s guide to cell-free protein synthesis. Methods Protocols 2(1):24

    Article  CAS  Google Scholar 

  19. Mierendorf RC, Morris BB, Hammer B et al (1998) Expression and Purification of Recombinant Proteins Using the pET System. Methods Mol Med 13:257–292

    CAS  PubMed  Google Scholar 

  20. Esposito D, Garvey LA, Chakiath CS (2009) Gateway cloning for protein expression. Methods Mol Biol 498:31–54

    Article  CAS  Google Scholar 

  21. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7(5):620–634

    Article  CAS  Google Scholar 

  22. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60(5):523–533

    Article  CAS  Google Scholar 

  23. Kosobokova E, Skrypnik K, Kosorukov V (2016) Overview of fusion tags for recombinant proteins. Biochem Mosc 81(3):187–200

    Article  CAS  Google Scholar 

  24. Kimple ME, Brill AL, Pasker RL (2013) Overview of affinity tags for protein purification. Curr Protoc Protein Sci 73(1):9.91–9.9.23

    Article  Google Scholar 

  25. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    PubMed  PubMed Central  Google Scholar 

  26. Duong-Ly KC, Gabelli SB (2015) Affinity purification of a recombinant protein expressed as a fusion with the Maltose-Binding Protein (MBP) tag. Methods Enzymol 559:17–26

    Article  CAS  Google Scholar 

  27. Spriestersbach A, Kubicek J, Schäfer F et al (2015) Purification of His-tagged proteins. Methods Enzymol 559:1–15

    Article  CAS  Google Scholar 

  28. Costa S, Almeida A, Castro A et al (2014) Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 5:63

    PubMed  PubMed Central  Google Scholar 

  29. Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17(4):353–358

    Article  CAS  Google Scholar 

  30. Studier FW (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219(1):37–44

    Article  CAS  Google Scholar 

  31. Rosano GL, Ceccarelli EA (2009) Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Factories 8(1):1–9

    Article  Google Scholar 

  32. Burgess RR (2009) Refolding solubilized inclusion body proteins. Methods Enzymol 463:259–282

    Article  CAS  Google Scholar 

  33. Wingfield PT, Palmer I, Liang SM (2014) Folding and purification of insoluble (inclusion body) proteins from Escherichia coli. Curr Protoc Protein Sci 78(1):6.5.1–6.5.30

    PubMed  Google Scholar 

  34. Ukkonen K, Veijola J, Vasala A et al (2013) Effect of culture medium, host strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium in shaken E. coli cultures. Microb Cell Factories 12(1):1–14

    Article  Google Scholar 

  35. Smith PE, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  CAS  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254

    Article  CAS  Google Scholar 

  37. Aitken A, Learmonth MP (2009) Protein determination by UV absorption. In: The protein protocols handbook. Humana Press, Totowa, pp 3–6

    Chapter  Google Scholar 

  38. Huang J, Niazi AK, Young D et al (2017) Self-protection of cytosolic malate dehydrogenase against oxidative stress in Arabidopsis. J Exp Bot 69(14):3491–3505

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Foundation-Flanders (FWO) senior postdoctoral fellowship (no.1227020N to J.H.), the China Scholarship Council (CSC, no. 201906300078 to Z.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, Z., Huang, J. (2022). In Vitro Biochemical Analysis of Recombinant Plant Proteins Under Oxidation. In: Mhamdi, A. (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2469-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2469-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2468-5

  • Online ISBN: 978-1-0716-2469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics