Skip to main content

Modification of Chloroplast Antioxidant Capacity by Plastid Transformation

  • Protocol
  • First Online:
Reactive Oxygen Species in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2526))

  • 697 Accesses

Abstract

As immobile organisms, green plants must be frequently challenged by a broad range of environmental stresses. During these constantly adverse conditions, reactive oxygen species (ROS) levels can rise extremely in plants, leading to cellular dysfunction and cell death presumably due to irreversible protein overoxidation. Once considered merely as deleterious molecules, cells seek to remove them as efficiently as possible. To enhance ROS scavenging capacity, genes encoding antioxidative enzymes can be directly expressed from the genome of plastid (chloroplast), a major compartment for ROS production in photosynthetic organisms. Thus, overexpression of antioxidant enzymes by plastid engineering may provide an alternative to enhance plant’s tolerance to stressful conditions specifically related with chloroplast-derived ROS. Here, we describe basic procedures for expressing glutathione reductase, a vital component of ascorbate-glutathione pathway, in tobacco via plastid transformation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Foyer C, Noctor G (2009) Redox regulation in photosynthetic organisms signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  Google Scholar 

  2. Paulsen CE, Carroll KS (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113:4633–4679

    Article  CAS  Google Scholar 

  3. Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F (2015) Oxidative post-translational modifications of cysteine residues in plant signal transduction. J Exp Bot 66:2923–2934

    Article  CAS  Google Scholar 

  4. Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214

    Article  CAS  Google Scholar 

  5. Mhamdi A, Van Breusegem F (2018) Reactive oxygen species in plant development. Development 145:dev164376

    Article  Google Scholar 

  6. Zhang T, Ma M, Chen T, Zhang L, Fan L, Zhang W, Wei B, Li S, Xuan W, Noctor G, Han Y (2020) Glutathione-dependent denitrosation of GSNOR1 promotes oxidative signalling downstream of H2O2. Plant Cell Environ 43:1175–1191

    Article  CAS  Google Scholar 

  7. Castro B, Citterico M, Kimura S, Stevens D, Wrzaczek M, Coaker G (2021) Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat Plants 7:403–412

    Article  CAS  Google Scholar 

  8. Foyer CH, Noctor G (2020) Redox homeostasis and signaling in a higher-CO2 world. Annu Rev Plant Biol 71:157–182

    Article  CAS  Google Scholar 

  9. Ding H, Wang B, Han Y, Li S (2020) The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants. J Exp Bot 71:3405–3416

    Article  CAS  Google Scholar 

  10. Kerchev P, De Smet B, Waszczak C, Messens J, Van Breusegem F (2015) Redox strategies for crop improvement. Antioxid Redox Signal 23:1186–1205

    Article  CAS  Google Scholar 

  11. Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  Google Scholar 

  12. Poage M, Le Martret B, Jansen MA, Nugent GD, Dix PJ (2011) Modification of reactive oxygen species scavenging capacity of chloroplasts through plastid transformation. Plant Mol Biol 76:371–384

    Article  CAS  Google Scholar 

  13. Wang B, Ding H, Chen Q, Ouyang L, Li S, Zhang J (2019) Enhanced tolerance to methyl viologen-mediated oxidative stress via AtGR2 expression from chloroplast genome. Front Plant Sci 10:1178

    Article  Google Scholar 

  14. Czegeny G, Le Martret B, Pavkovics D, Dix PJ, Hideg E (2016) Elevated ROS-scavenging enzymes contribute to acclimation to UV-B exposure in transplastomic tobacco plants, reducing the role of plastid peroxidases. J Plant Physiol 201:95–100

    Article  CAS  Google Scholar 

  15. Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241

    Article  CAS  Google Scholar 

  16. Boehm CR, Bock R (2019) Recent advances and current challenges in synthetic biology of the plastid genetic system and metabolism. Plant Physiol 179:794–802

    Article  CAS  Google Scholar 

  17. Li S, Chang L, Zhang J (2021) Advancing organelle genome transformation and editing for crop improvement. Plant Commun 2:100141

    Article  Google Scholar 

  18. Daniell H, Jin S, Zhu XG, Gitzendanner MA, Soltis DE, Soltis PS (2021) Green giant—a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. Plant Biotechnol J 19:430–447

    Article  CAS  Google Scholar 

  19. Ahmad N, Michoux F, Lossl AG, Nixon PJ (2016) Challenges and perspectives in commercializing plastid transformation technology. J Exp Bot 67:5945–5960

    Article  CAS  Google Scholar 

  20. Wu Y, You L, Li S, Ma M, Wu M, Ma L, Bock R, Chang L, Zhang J (2017) In vivo assembly in Escherichia coli of transformation vectors for plastid genome engineering. Front Plant Sci 8:1454

    Article  Google Scholar 

  21. Motohashi K (2017) Evaluation of the efficiency and utility of recombinant enzyme-free seamless DNA cloning methods. Biochem Biophys Rep 9:310–315

    PubMed  PubMed Central  Google Scholar 

  22. Noctor G, Mhamdi A, Foyer C (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ 39:1140–1160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (32071477, 31700227, and 31300225), Innovation Base for Introducing Talents of Discipline of Hubei Province (2019BJH021), and start-up funding of Anhui Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, S. et al. (2022). Modification of Chloroplast Antioxidant Capacity by Plastid Transformation. In: Mhamdi, A. (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2469-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2469-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2468-5

  • Online ISBN: 978-1-0716-2469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics