Skip to main content

Identification of Novel Endogenous NOD Ligands: Quantitative Analysis of Binding Affinities of NOD1 or NOD2 with Sphingosine-1-Phosphate Using Microscale Thermophoresis

  • Protocol
  • First Online:
Effector-Triggered Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2523))

Abstract

Nucleotide binding oligomerization domain-containing protein 1 (NOD1) and NOD2 have been identified as intracellular receptors for bacterial peptidoglycan for almost two decades; however, the direct binding with their respective ligands has only been recently demonstrated due to the difficulty of achieving large quantity of proteins with high purity. Here we describe a strategy combining immunoprecipitation of GFP-tagged proteins and microscale thermophoresis (MST) for efficient one-step purification of NOD1-GFP and NOD2-GFP and easy measurement of the binding affinities of NOD1 or NOD2 with sphingosine-1-phosphate (S1P) using small amount of proteins (nM range). This method will allow the identification of novel agonists/antagonists for NOD1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertin J, Nir WJ, Fischer CM, Tayber OV, Errada PR, Grant JR, Keilty JJ, Gosselin ML, Robison KE, Wong GH, Glucksmann MA, DiStefano PS (1999) Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J Biol Chem 274(19):12955–12958. https://doi.org/10.1074/jbc.274.19.12955

    Article  CAS  PubMed  Google Scholar 

  2. Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, Carrio R, Merino J, Liu D, Ni J, Nunez G (1999) Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 274(21):14560–14567. https://doi.org/10.1074/jbc.274.21.14560

    Article  CAS  PubMed  Google Scholar 

  3. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276(7):4812–4818. https://doi.org/10.1074/jbc.M008072200

    Article  CAS  PubMed  Google Scholar 

  4. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nunez G, Inohara N (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4(7):702–707. https://doi.org/10.1038/ni945

    Article  CAS  PubMed  Google Scholar 

  5. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300(5625):1584–1587. https://doi.org/10.1126/science.1084677

    Article  CAS  PubMed  Google Scholar 

  6. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872. https://doi.org/10.1074/jbc.C200651200

    Article  CAS  PubMed  Google Scholar 

  7. Girardin SE, Travassos LH, Herve M, Blanot D, Boneca IG, Philpott DJ, Sansonetti PJ, Mengin-Lecreulx D (2003) Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem 278(43):41702–41708. https://doi.org/10.1074/jbc.M307198200

    Article  CAS  PubMed  Google Scholar 

  8. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nunez G (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem 278(8):5509–5512. https://doi.org/10.1074/jbc.C200673200

    Article  CAS  PubMed  Google Scholar 

  9. Mo J, Boyle JP, Howard CB, Monie TP, Davis BK, Duncan JA (2012) Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP. J Biol Chem 287(27):23057–23067. https://doi.org/10.1074/jbc.M112.344283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Askari N, Correa RG, Zhai D, Reed JC (2012) Expression, purification, and characterization of recombinant NOD1 (NLRC1): a NLR family member. J Biotechnol 157(1):75–81. https://doi.org/10.1016/j.jbiotec.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  11. Wang YC, Westcott NP, Griffin ME, Hang HC (2019) Peptidoglycan metabolite photoaffinity reporters reveal direct binding to intracellular pattern recognition receptors and Arf GTPases. ACS Chem Biol 14(3):405–414. https://doi.org/10.1021/acschembio.8b01038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laroui H, Yan Y, Narui Y, Ingersoll SA, Ayyadurai S, Charania MA, Zhou F, Wang B, Salaita K, Sitaraman SV, Merlin D (2011) L-Ala-gamma-D-Glu-meso-diaminopimelic acid (DAP) interacts directly with leucine-rich region domain of nucleotide-binding oligomerization domain 1, increasing phosphorylation activity of receptor-interacting serine/threonine-protein kinase 2 and its interaction with nucleotide-binding oligomerization domain 1. J Biol Chem 286(35):31003–31013. https://doi.org/10.1074/jbc.M111.257501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grimes CL, Ariyananda Lde Z, Melnyk JE, O'Shea EK (2012) The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J Am Chem Soc 134(33):13535–13537. https://doi.org/10.1021/ja303883c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Podobnik M, Krasevec N, Bedina Zavec A, Naneh O, Flasker A, Caserman S, Hodnik V, Anderluh G (2016) How to study protein-protein interactions. Acta Chim Slov 63(3):424–439. https://doi.org/10.17344/acsi.2016.2419

    Article  CAS  PubMed  Google Scholar 

  15. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9(4):342–353. https://doi.org/10.1089/adt.2011.0380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seidel SA, Dijkman PM, Lea WA, van den Bogaart G, Jerabek-Willemsen M, Lazic A, Joseph JS, Srinivasan P, Baaske P, Simeonov A, Katritch I, Melo FA, Ladbury JE, Schreiber G, Watts A, Braun D, Duhr S (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59(3):301–315. https://doi.org/10.1016/j.ymeth.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  17. Pei G, Zyla J, He L, Moura-Alves P, Steinle H, Saikali P, Lozza L, Nieuwenhuizen N, Weiner J, Mollenkopf HJ, Ellwanger K, Arnold C, Duan M, Dagil Y, Pashenkov M, Boneca IG, Kufer TA, Dorhoi A, Kaufmann SH (2021) Cellular stress promotes NOD1/2-dependent inflammation via the endogenous metabolite sphingosine-1-phosphate. EMBO J:e106272. https://doi.org/10.15252/embj.2020106272

  18. Hahn JS (2005) Regulation of Nod1 by Hsp90 chaperone complex. FEBS Lett 579(20):4513–4519. https://doi.org/10.1016/j.febslet.2005.07.024

    Article  CAS  PubMed  Google Scholar 

  19. Lee KH, Biswas A, Liu YJ, Kobayashi KS (2012) Proteasomal degradation of Nod2 protein mediates tolerance to bacterial cell wall components. J Biol Chem 287(47):39800–39811. https://doi.org/10.1074/jbc.M112.410027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohanan V, Grimes CL (2014) The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease. J Biol Chem 289(27):18987–18998. https://doi.org/10.1074/jbc.M114.557686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khavrutskii L, Yeh J, Timofeeva O, Tarasov SG, Pritt S, Stefanisko K, Tarasova N (2013) Protein purification-free method of binding affinity determination by microscale thermophoresis. J Vis Exp 78. https://doi.org/10.3791/50541

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pei, G. (2022). Identification of Novel Endogenous NOD Ligands: Quantitative Analysis of Binding Affinities of NOD1 or NOD2 with Sphingosine-1-Phosphate Using Microscale Thermophoresis. In: Kufer, T.A., Kaparakis-Liaskos, M. (eds) Effector-Triggered Immunity. Methods in Molecular Biology, vol 2523. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2449-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2449-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2448-7

  • Online ISBN: 978-1-0716-2449-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics