Skip to main content

Plasmid-Based Gene Knockout Strategy with Subsequent Marker Recycling in Pichia pastoris

  • Protocol
  • First Online:
Yeast Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2513))

Abstract

Gene knockout is a key technology in the development of cell factories and basic research alike. The methylotrophic yeast Pichia pastoris is typically employed as a producer of proteins and of fine chemicals, due to its ability to accumulate high cell densities in conjunction with a set of strong inducible promoters. However, protocols for genome engineering in this host are still cumbersome and time-consuming. Moreover, extensive genome engineering raises the need for a multitude of selection markers, which are limited in P. pastoris. In this chapter, we describe a fast and efficient method for gene disruption in P. pastoris that utilizes marker recycling to enable repetitive genome engineering cycles. A set of ready-to-use knockout vectors simplifies cloning procedures and facilitates quick knockout generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  Google Scholar 

  2. Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

    Article  CAS  Google Scholar 

  3. Gao L, Cai M, Shen W et al (2013) Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production. Microb Cell Fact 12:77. https://doi.org/10.1186/1475-2859-12-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Araya-Garay JM, Feijoo-Siota L, Rosa-Dos-Santos F et al (2012) Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene. Appl Microbiol Biotechnol 93:2483–2492. https://doi.org/10.1007/s00253-011-3764-7

    Article  CAS  PubMed  Google Scholar 

  5. Meesapyodsuk D, Chen Y, Ng SH et al (2015) Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance. J Lipid Res 56:2102–2109. https://doi.org/10.1194/jlr.M060954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wriessnegger T, Augustin P, Engleder M et al (2014) Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 24:18–29. https://doi.org/10.1016/j.ymben.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  7. Moser S, Strohmeier GA, Leitner E et al (2018) Whole-cell (+)-ambrein production in the yeast Pichia pastoris. Metab Eng Commun 7. https://doi.org/10.1016/j.mec.2018.e00077

  8. Weninger A, Fischer JE, Raschmanová H et al (2018) Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers. J Cell Biochem 119:3183–3198. https://doi.org/10.1002/jcb.26474

    Article  CAS  PubMed  Google Scholar 

  9. Krejci L, Altmannova V, Spirek M, Zhao X (2012) Homologous recombination and its regulation. Nucleic Acids Res 40:5795–5818

    Article  CAS  Google Scholar 

  10. Liu Q, Shi X, Song L et al (2019) CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris. Microb Cell Factories 18. https://doi.org/10.1186/s12934-019-1194-x

  11. Tsakraklides V, Brevnova E, Stephanopoulos G, Shaw AJ (2015) Improved gene targeting through cell cycle synchronization. PLoS One 10(7):e0133434 10. https://doi.org/10.1371/journal.pone.0133434

    Article  CAS  Google Scholar 

  12. Chen Z, Sun H, Li P et al (2013) Enhancement of the gene targeting efficiency of non-conventional yeasts by increasing genetic redundancy. PLoS One 8(3):e57952 8. https://doi.org/10.1371/journal.pone.0057952

    Article  CAS  Google Scholar 

  13. Näätsaari L, Mistlberger B, Ruth C et al (2012) Deletion of the Pichia pastoris ku70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One 7(6):e39720 7. https://doi.org/10.1371/journal.pone.0039720

    Article  CAS  Google Scholar 

  14. Bernauer L, Radkohl A, Lehmayer LGK, Emmerstorfer-Augustin A (2021) Komagataella phaffii as emerging model organism in fundamental research. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.607028

  15. Hamilton SR, Bobrowicz P, Bobrowicz B et al (2003) Production of complex human glycoproteins in yeast. Science (80- ) 301:1244–1246. https://doi.org/10.1126/science.1088166

    Article  CAS  Google Scholar 

  16. Li D, Zhang B, Li S et al (2017) A novel vector for construction of markerless multicopy overexpression transformants in Pichia pastoris. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01698

  17. Pan R, Zhang J, Shen WL et al (2011) Sequential deletion of Pichia pastoris genes by a self-excisable cassette. FEMS Yeast Res 11:292–298. https://doi.org/10.1111/j.1567-1364.2011.00716.x

    Article  CAS  PubMed  Google Scholar 

  18. Ahmad M, Winkler CM, Kolmbauer M et al (2019) Pichia pastoris protease-deficient and auxotrophic strains generated by a novel, user-friendly vector toolbox for gene deletion. Yeast 36:557–570. https://doi.org/10.1002/yea.3426

    Article  CAS  Google Scholar 

  19. Lin-Cereghino J, Wong WW, Xiong S et al (2005) Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. BioTechniques 38:44–48. https://doi.org/10.2144/05381BM04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Pichler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kobalter, S., Radkohl, A., Schwab, H., Emmerstorfer-Augustin, A., Pichler, H. (2022). Plasmid-Based Gene Knockout Strategy with Subsequent Marker Recycling in Pichia pastoris. In: Mapelli, V., Bettiga, M. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 2513. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2399-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2399-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2398-5

  • Online ISBN: 978-1-0716-2399-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics