Skip to main content

CRISPR/Cas9 Tool Kit for Efficient and Targeted Insertion/Deletion Mutagenesis of the Komagataella phaffii (Pichia pastoris) Genome

  • Protocol
  • First Online:
Yeast Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2513))

Abstract

Efficient targeted genome engineering of Komagataella phaffii requires balanced expression of Cas9 nuclease and a target-specific guide RNA (gRNA). In addition, correct processing of the transcribed RNA to provide the designed gRNA as a target selective partner of targeted Cas9 protein for binding to genomic DNA is essential for efficient genome engineering. This method describes a step-by-step procedure and recommended tools for simple and efficient design of gRNAs to introduce insertions or deletions at targeted sites by CRISPR/Cas9-directed double-strand breaks, followed by error-prone nonhomologous end-joining repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johansson B, Hahn-Hägerdal B (2004) Multiple gene expression by chromosomal integration and CRE-loxP-mediated marker recycling in Saccharomyces cerevisiae. Methods Mol Biol. https://doi.org/10.1385/1-59259-774-2:287

  2. Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A (2012) Deletion of the pichia pastoris ku70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One 7:e39720

    Article  Google Scholar 

  3. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. https://doi.org/10.1038/nbt.2842

  4. Dicarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt135

  5. Weninger A, Hatzl AM, Schmid C, Vogl T, Glieder A (2015) Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2016.03.027

  6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (80- ). https://doi.org/10.1126/science.1225829

  7. Barnes DE (2001) Non-homologous end joining as a mechanism of DNA repair. Curr Biol. https://doi.org/10.1016/S0960-9822(01)00279-2

  8. Bethesda (MD): National Library of Medicine (US): National Center for Biotechnology Information. 1988

    Google Scholar 

  9. Lin-Cereghino J, Wong WW, Xiong S, Giang W, Luong LT, Vu J, Johnson SD, Lin-Cereghino GP (2005) Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. BioTechniques 38:44–48

    Article  CAS  Google Scholar 

  10. Wellcome Genome Campus H (UK): EMBL-EBI. 1992

    Google Scholar 

  11. University of Natural Ressources and Life Sciences Vienna I of AM: Pichiagenome.org. 2009

    Google Scholar 

  12. Mattanovich D, Callewaert N, Rouzé P, Lin YC, Graf A, Redl A, Tiels P, Gasser B, De Schutter K (2009) Open access to sequence: browsing the Pichia pastoris genome. Microb Cell Factories. https://doi.org/10.1186/1475-2859-8-53

  13. Stemmer M, Thumberger T, Del Sol KM, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10:1–11

    Article  Google Scholar 

  14. Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann JH, Heckl D (2018) Refined sgRNA efficacy prediction improves largeand small-scale CRISPR-Cas9 applications. Nucleic Acids Res 46:1375–1385

    Article  CAS  Google Scholar 

  15. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Glieder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fischer, J.E., Glieder, A. (2022). CRISPR/Cas9 Tool Kit for Efficient and Targeted Insertion/Deletion Mutagenesis of the Komagataella phaffii (Pichia pastoris) Genome. In: Mapelli, V., Bettiga, M. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 2513. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2399-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2399-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2398-5

  • Online ISBN: 978-1-0716-2399-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics