Skip to main content

CasPER: A CRISPR/Cas9-Based Method for Directed Evolution in Genomic Loci in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Yeast Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2513))

Abstract

Here, in this chapter, we describe a detailed protocol for the method named Cas9-mediated protein evolution reaction or short CasPER. CasPER is based on the generation of large 300–600-bp mutagenized linear DNA fragments by error-prone PCR which are used as a donor for repair of double-strand break mediated by Cas9 and subsequently integrated to the genome. This method can be efficiently used for directed evolution of desired essential or nonessential genes in the genome and most importantly can be multiplexed. Altogether, the described method allows for heterogeneous DNA integration with successful transformation efficiencies of 98–100% for both single and multiplex targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buller AR, Brinkmann-Chen S, Romney DK, Herger M, Murciano-Calles J, Arnold FH (2015) Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation. Proc Natl Acad Sci 112:14599–14604

    Article  CAS  Google Scholar 

  2. Jeschek M, Reuter R, Heinisch T, Trindler C, Klehr J, Panke S et al (2016) Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537:661–665

    Article  CAS  Google Scholar 

  3. DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJJ, Dueber JE (2015) An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol 11:465–471

    Article  CAS  Google Scholar 

  4. Körfer G, Pitzler C, Vojcic L, Martinez R, Schwaneberg U (2016) In vitro flow cytometry-based screening platform for cellulase engineering. Sci Rep 6:26128

    Article  Google Scholar 

  5. Wong TS, Tee KL, Hauer B, Schwaneberg U (2004) Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution. Nucleic Acids Res 32:e26

    Article  Google Scholar 

  6. Mutalik VK, Guimaraes JC, Cambray G, Mai Q-A, Christoffersen MJ, Martin L et al (2013) Quantitative estimation of activity and quality for collections of functional genetic elements. Nat Methods 10:347–353

    Article  CAS  Google Scholar 

  7. Plesa C, Sidore AM, Lubock NB, Zhang D, Kosuri S (2018) Multiplexed gene synthesis in emulsions for exploring protein functional landscapes. Science 359:343–347

    Article  CAS  Google Scholar 

  8. Yang J, Ruff AJ, Arlt M, Schwaneberg U (2017) Casting epPCR (cepPCR): a simple random mutagenesis method to generate high quality mutant libraries. Biotechnol Bioeng 114:1921–1927

    Article  CAS  Google Scholar 

  9. Raman S, Rogers JK, Taylor ND, Church GM (2014) Evolution-guided optimization of biosynthetic pathways. Proc Natl Acad Sci 111:201409523

    Article  Google Scholar 

  10. Skjoedt ML, Snoek T, Kildegaard KR, Arsovska D, Eichenberger M, Goedecke TJ et al (2016) Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nat Chem Biol 12:951–958

    Article  CAS  Google Scholar 

  11. Lee ME, Aswani A, Han AS, Tomlin CJ, Dueber JE (2013) Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res 41:10668–10678

    Article  CAS  Google Scholar 

  12. Mundhada H, Miguel JS, Schneider K, Koza A, Christensen HB, Klein T et al (2016) Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution. Metab Eng [Internet]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1096717616302348

  13. Gibson TJ, Seiler M, Veitia RA (2013) The transience of transient overexpression. Nat Methods 10:715–721

    Article  CAS  Google Scholar 

  14. Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 78:6354–6358

    Article  CAS  Google Scholar 

  15. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  CAS  Google Scholar 

  16. Resnick MA, Martin P (1976) The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol Gen Genet 143:119–129

    Article  CAS  Google Scholar 

  17. Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91:6064–6068

    Article  CAS  Google Scholar 

  18. Storici F, Lewis LK, Resnick MA (2001) In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol 19:773–776

    Article  CAS  Google Scholar 

  19. Storici F, Resnick M, a. (2003) Delitto perfetto targeted mutagenesis in yeast with oligonucleotides. Genet Eng 25:189–207

    Google Scholar 

  20. Kuijpers NGA, Chroumpi S, Vos T, Solis-Escalante D, Bosman L, Pronk JT et al (2013) One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res 13:769–781

    Article  CAS  Google Scholar 

  21. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N (2013) Multiplex genome engineering using CRISPR/Cas systems. Science [Internet] 339. Available from: https://doi.org/10.1126/science.1231143

  22. Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang Y-J et al (2015) Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab Eng 31:13–21

    Article  Google Scholar 

  23. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343

    Article  CAS  Google Scholar 

  24. Jakočiūnas T, Jensen MK, Keasling JD (2016) CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 34:44–59

    Article  Google Scholar 

  25. Jakočiūnas T, Jensen MK, Keasling JD (2017) System-level perturbations of cell metabolism using CRISPR/Cas9. Curr Opin Biotechnol 46:134–140

    Article  Google Scholar 

  26. Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J (2014) Saturation editing of genomic regions by multiplex homology-directed repair. Nature NIH Public Access 513:120–123

    CAS  Google Scholar 

  27. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  CAS  Google Scholar 

  28. Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, Liu R et al (2016) Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat Biotechnol [Internet]. Available from: http://www.nature.com/doifinder/10.1038/nbt.3718

  29. Barbieri EM, Muir P, Akhuetie-Oni BO, Yellman CM, Isaacs FJ (2017) Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes. Cell [Internet]. Available from: https://doi.org/10.1016/j.cell.2017.10.034

  30. Jakočiūnas T, Pedersen LE, Lis AV, Jensen MK, Keasling JD (2018) CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metab Eng 48:288–296

    Article  Google Scholar 

  31. Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE et al (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222

    Article  Google Scholar 

  32. Jessop-Fabre MM, Jakočiūnas T, Stovicek V, Dai Z, Jensen MK, Keasling JD et al (2016) EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J 11:1110–1117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Jensen .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jakočiūnas, T., Jensen, M.K., Keasling, J.D. (2022). CasPER: A CRISPR/Cas9-Based Method for Directed Evolution in Genomic Loci in Saccharomyces cerevisiae. In: Mapelli, V., Bettiga, M. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 2513. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2399-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2399-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2398-5

  • Online ISBN: 978-1-0716-2399-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics