Skip to main content

Automated Evolutionary Engineering of Yeasts

  • Protocol
  • First Online:
Yeast Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2513))

Abstract

Evolutionary engineering of microbes provides a powerful tool for untargeted optimization of (engineered) cell factories and identification of genetic targets for further research. Directed evolution is an intrinsically time-intensive effort, and automated methods can significantly reduce manual labor. Here, design considerations for various evolutionary engineering methods are described, and generic workflows for batch-, chemostat-, and accelerostat-based evolution in automated bioreactors are provided. These methods can be used to evolve yeast cultures for >1000 generations and are designed to require minimal manual intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mans R, Daran J-MG, Pronk JT (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 50:47–56

    Article  CAS  Google Scholar 

  2. Ho P, Swinnen S, Duitama J et al (2017) The sole introduction of two single-point mutations establishes glycerol utilization in Saccharomyces cerevisiae CEN.PK derivatives. Biotechnol Biofuels 10(1):10

    Article  Google Scholar 

  3. Kildegaard KR, Hallström BM, Blicher TH et al (2014) Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab Eng 26:57–66

    Article  CAS  Google Scholar 

  4. Caspeta L, Chen Y, Ghiaci P et al (2014) Altered sterol composition renders yeast thermotolerant. Science 346(6205):75–78

    Article  CAS  Google Scholar 

  5. Gonzalez-Ramos D, De Vries ARG, Grijseels SS et al (2016) A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels 9(1):173

    Article  Google Scholar 

  6. Juergens H, Niemeijer M, Jennings-Antipov LD et al (2018) Evaluation of a novel cloud-based software platform for structured experiment design and linked data analytics. Sci Data 5:180195

    Article  CAS  Google Scholar 

  7. Zhou H, Cheng JS, Wang BL et al (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14(6):611–622

    Article  CAS  Google Scholar 

  8. Basso TO, de Kok S, Dario M et al (2011) Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metab Eng 13(6):694–703

    Article  Google Scholar 

  9. Kuyper M, Toirkens MJ, Diderich JA et al (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5(10):925–934

    Article  CAS  Google Scholar 

  10. Bracher JM, de Hulster E, Koster CC et al (2017) Laboratory evolution of a biotin-requiring Saccharomyces cerevisiae strain for full biotin prototrophy and identification of causal mutations. Appl Environ Microbiol 83(16):e00892–e00817

    Article  CAS  Google Scholar 

  11. Marques WL, van der Woude LN, Luttik MA et al (2018) Laboratory evolution and physiological analysis of Saccharomyces cerevisiae strains dependent on sucrose uptake via the Phaseolus vulgaris Suf1 transporter. Yeast 35(12):639–652

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The contribution of CM was funded by an Advanced Grant of the European Research Council (grant # 694633 to Jack T. Pronk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Mans .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de Hulster, E., Mooiman, C., Timmermans, R., Mans, R. (2022). Automated Evolutionary Engineering of Yeasts. In: Mapelli, V., Bettiga, M. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 2513. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2399-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2399-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2398-5

  • Online ISBN: 978-1-0716-2399-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics