Skip to main content

Production and Preparation of Isotopically Labeled Human Membrane Proteins in Pichia pastoris for Fast-MAS-NMR Analyses

  • Protocol
  • First Online:
Heterologous Expression of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2507))

Abstract

Membrane proteins (MPs) comprise about one-third of the human proteome, playing critical roles in many physiological processes and associated disorders. Consistently, they represent one of the largest classes of targets for the pharmaceutical industry. Their study at the molecular level is however particularly challenging, resulting in a severe lack of structural and dynamic information that is hindering their detailed functional characterization and the identification of novel potent drug candidates.

Magic Angle Spinning (MAS) NMR is a reliable and efficient method for the determination of protein structures and dynamics and for the identification of ligand binding sites and equilibria. MAS-NMR is particularly well suited for MPs since they can be directly analysed in a native-like lipid bilayer environment but used to require aggravating large amounts of isotope enriched material. The frequent toxicity of human MP overexpression in bacterial cultures poses an additional hurdle, resulting in the need for alternative (and often more costly) expression systems. The recent development of very fast (up to 150 kHz) MAS probes has revolutionized the field of biomolecular solid-state NMR enabling higher spectral resolution with significant reduction of the required sample, rendering eukaryotic expression systems cost-effective.

Here is presented a set of accessible procedures validated for the production and preparation of eukaryotic MPs for Fast-MAS 1H-detected NMR analysis. The methodology is illustrated with the human copper uptake protein hCTR1 recombinantly produced and 13C-15N uniformly labeled with the versatile and affordable Pichia pastoris system. Subsequent purification procedures allow the recovery of mg amounts that are then reconstituted into liposome formulations compatible with solid-state NMR handling and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng Y (2018) Membrane protein structural biology in the era of single particle cryo-EM. Curr Opin Struct Biol 52:58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reis R, Moraes I (2019) Structural biology and structure-function relationships of membrane proteins. Biochem Soc Trans 47:47–61

    Article  CAS  PubMed  Google Scholar 

  3. Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM (2021) Highlighting membrane protein structure and function: a celebration of the Protein Data Bank. J Biol Chem 17:100557

    Article  CAS  Google Scholar 

  4. Standfuss J (2019) Membrane protein dynamics studied by X-ray lasers—or why only time will tell. Curr Opin Struct Biol 57:63–71

    Article  CAS  PubMed  Google Scholar 

  5. Sahu ID, Lorigan GA (2020) Electron paramagnetic resonance as a tool for studying membrane proteins. Biomol Ther 10(5):763

    CAS  Google Scholar 

  6. Heath GR, Scheuring S (2019) Advances in high-speed atomic force microscopy (HS-AFM) reveal dynamics of transmembrane channels and transporters. Curr Opin Struct Biol 57:93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mandala VS, Williams JK, Hong M (2018) Structure and dynamics of membrane proteins from solid-state NMR. Annu Rev Biophys 47:201–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bostock MJ, Solt AS, Nietlispach D (2019) The role of NMR spectroscopy in mapping the conformational landscape of GPCRs. Curr Opin Struct Biol 57:145–156

    Article  CAS  PubMed  Google Scholar 

  9. Yeh V, Goode A, Bonev BB (2020) Membrane protein structure determination and characterisation by solution and solid-state NMR. Biology 9(11):396

    Article  CAS  PubMed Central  Google Scholar 

  10. Andreas LB, Le Marchand T, Jaudzems K, Pintacuda G (2015) High-resolution proton-detected NMR of proteins at very fast MAS. J Magn Reson 253:36–49

    Article  CAS  PubMed  Google Scholar 

  11. Struppe J, Quinn CM, Lu M, Wang M, Hou G, Lu X, Kraus J, Andreas LB, Stanek J, Lalli D, Lesage A, Pintacuda G, Maas W, Gronenborn AM, Polenova T (2017) Expanding the horizons for structural analysis of fully protonated protein assemblies by NMR spectroscopy at MAS frequencies above 100 kHz. Solid State Nucl Magn Reson 87:117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Daskalov A, Martinez D, Coustou V, El Mammeri N, Berbon M, Andreas LB, Bardiaux B, Stanek J, Noubhani A, Kauffmann B, Wall JS, Pintacuda G, Saupe SJ, Habenstein B, Loquet A (2021) Structural and molecular basis of cross-seeding barriers in amyloids. Proc Natl Acad Sci U S A 118:e2014085118

    Article  CAS  PubMed  Google Scholar 

  13. Lalli D, Idso MN, Andreas LB, Hussain S, Baxter N, Han S, Chmelka BF, Pintacuda G (2017) Proton-based structural analysis of a heptahelical transmembrane protein in lipid bilayers. J Am Chem Soc 139:13006–13012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schubeis T, Le Marchand T, Andreas LB, Pintacuda G (2018) 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins. J Magn Reson 287:140–152

    Google Scholar 

  15. Shi C, Öster C, Bohg C, Li L, Lange S, Chevelkov V, Lange A (2019) Structure and dynamics of the rhomboid protease GlpG in liposomes studied by solid-state NMR. J Am Chem Soc 141:17314–17321

    Article  CAS  PubMed  Google Scholar 

  16. Schubeis T, Le Marchand T, Daday C, Kopec W, Tekwani Movellan K, Stanek J, Schwarzer TS, Castiglione K, de Groot BL, Pintacuda G, Andreas LB (2020) A β-barrel for oil transport through lipid membranes: dynamic NMR structures of AlkL. Proc Natl Acad Sci U S A 117(35):21014–21021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinto C, Mance D, Sinnige T, Daniëls M, Weingarth M, Baldus M (2018) Formation of the β-barrel assembly machinery complex in lipid bilayers as seen by solid-state NMR. Nat Commun 9:4135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Najbauer EE, Movellan KT, Schubeis T, Schwarzer T, Castiglione K, Giller K, Pintacuda G, Becker S, Andreas LB (2019) Probing membrane protein insertion into lipid bilayers by solid-state NMR. ChemPhysChem 20(2):302–310

    CAS  PubMed  Google Scholar 

  19. van der Cruijsen EA, Prokofyev AV, Pongs O, Baldus M (2017) Probing conformational changes during the gating cycle of a potassium channel in lipid bilayers. Biophys J 112(1):99–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Huster D (2014) Solid-state NMR spectroscopy to study protein-lipid interactions. Biochim Biophys Acta 1841:1146–1160

    Article  CAS  PubMed  Google Scholar 

  21. Duncan AL, Song W, Sansom MSP (2020) Lipid-dependent regulation of ion channels and g protein-coupled receptors: insights from structures and simulations. Annu Rev Pharmacol Toxicol 60:31–50

    Article  CAS  PubMed  Google Scholar 

  22. Jones AJY, Gabriel F, Tandale A, Nietlispach D (2020) Structure and dynamics of GPCRs in lipid membranes: physical principles and experimental approaches. Molecules 25(20):4729

    Article  CAS  PubMed Central  Google Scholar 

  23. Lacabanne D, Fogeron ML, Wiegand T, Cadalbert R, Meier BH, Böckmann A (2019) Protein sample preparation for solid-state NMR investigations. Prog Nucl Magn Reson Spectrosc 110:20–33

    Article  CAS  PubMed  Google Scholar 

  24. Munro R, de Vlugt J, Ladizhansky V, Brown LS (2020) Improved protocol for the production of the low-expression eukaryotic membrane protein human aquaporin 2 in Pichia pastoris for solid-state NMR. Biomol Ther 10(3):434

    CAS  Google Scholar 

  25. Pacull EM, Sendker F, Bernhard F, Scheidt HA, Schmidt P, Huster D, Krug U (2020) Integration of cell-free expression and solid-state NMR to investigate the dynamic properties of different sites of the growth hormone secretagogue receptor. Front Pharmacol 11:562113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jirasko V, Lakomek NA, Penzel S, Fogeron ML, Bartenschlager R, Meier BH, Böckmann A (2020) Proton-detected solid-state NMR of the cell-free synthesized α-helical transmembrane protein NS4B from hepatitis C virus. Chembiochem 21(10):1453–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernauer L, Radkohl A, Lehmayer LGK, Emmerstorfer-Augustin A (2021) Komagataella phaffii as emerging model organism in fundamental research. Front Microbiol 11:607028

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alkhalfioui F, Logez C, Bornert O, Wagner R (2011) Expression systems: Pichia pastoris. In: Robinson AS (ed) Production of membrane proteins—strategies for expression and isolation. Wiley-VCH, pp 75–108

    Chapter  Google Scholar 

  29. Byrne B (2015) Pichia pastoris as an expression host for membrane protein structural biology. Curr Opin Struct Biol 32:9–17

    Article  CAS  PubMed  Google Scholar 

  30. Guyot L, Hartmann L, Mohammed-Bouteben S, Caro L, Wagner R (2020) Preparation of recombinant membrane proteins from Pichia pastoris for molecular investigations. Curr Protoc Protein Sci 100:e104

    Article  CAS  PubMed  Google Scholar 

  31. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  PubMed  Google Scholar 

  32. Zhang M (2020) Recent developments of methyl-labeling strategies in Pichia pastoris for NMR spectroscopy. Protein Expr Purif 166:105521

    Article  CAS  PubMed  Google Scholar 

  33. Clark L, Dikiy I, Rosenbaum DM, Gardner KH (2018) On the use of Pichia pastoris for isotopic labeling of human GPCRs for NMR studies. J Biomol NMR 71:203–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eddy MT, Lee MY, Gao ZG, White KL, Didenko T, Horst R, Audet M, Stanczak P, McClary KM, Han GW, Jacobson KA, Stevens RC, Wüthrich K (2018) Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 172:68–80.e12

    Article  CAS  PubMed  Google Scholar 

  35. Ye L, Neale C, Sljoka A, Lyda B, Pichugin D, Tsuchimura N, Larda ST, Pomès R, García AE, Ernst OP, Sunahara RK, Prosser RS (2018) Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nat Commun 9(1):1372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fan Y, Shi L, Ladizhansky V, Brown LS (2011) Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR 49:151–161

    Article  CAS  PubMed  Google Scholar 

  37. Emami S, Fan Y, Munro R, Ladizhansky V, Brown LS (2013) Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. J Biomol NMR 55:147–155

    Article  CAS  PubMed  Google Scholar 

  38. Kuo MT, Fu S, Savaraj N, Chen HH (2012) Role of the human high-affinity copper transporter in copper homeostasis regulation and cisplatin sensitivity in cancer chemotherapy. Cancer Res 72:4616–4621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren F, Logeman BL, Zhang X, Liu Y, Thiele DJ, Yuan P (2019) X-ray structures of the high-affinity copper transporter Ctr1. Nat Commun 10:1386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mandal T, Kar S, Maji S, Sen S, Gupta A (2020) Structural and functional diversity among the members of CTR, the membrane copper transporter family. J Membr Biol 253:459–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Logez C, Alkhalfioui F, Byrne B, Wagner R (2012) Preparation of expression plasmids for Pichia pastoris. Methods Mol Biol 866:25–40

    Article  CAS  PubMed  Google Scholar 

  42. Hartmann L, Kugler V, Wagner R (2016) Expression of eukaryotic membrane proteins in Pichia pastoris. Methods Mol Biol 1432:143–162

    Article  CAS  PubMed  Google Scholar 

  43. Duquesne K, Prima V, Sturgis JN (2016) Membrane protein solubilization and composition of protein detergent complexes. Methods Mol Biol 1432:243–260

    Article  CAS  PubMed  Google Scholar 

  44. Champeil P, Orlowski S, Babin S, Lund S, le Maire M, Møller J, Lenoir G, Montigny C (2016) A robust method to screen detergents for membrane protein stabilization, revisited. Anal Biochem 511:31–35

    Article  CAS  PubMed  Google Scholar 

  45. Kotov V, Bartels K, Veith K, Josts I, Subhramanyam UKT, Günther C, Labahn J, Marlovits TC, Moraes I, Tidow H, Löw C, Garcia-Alai MM (2019) High-throughput stability screening for detergent-solubilized membrane proteins. Sci Rep 9:10379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK (2016) Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 94:507–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aller SG, Unger VM (2006) Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proc Natl Acad Sci U S A 103:3627–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Feo CJ, Aller SG, Siluvai GS, Blackburn NJ, Unger VM (2009) Three-dimensional structure of the human copper transporter hCTR1. Proc Natl Acad Sci U S A 106:4237–4242

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hartmann L, Metzger E, Ottelard N, Wagner R (2017) Direct extraction and purification of recombinant membrane proteins from Pichia pastoris protoplasts. Methods Mol Biol 1635:45–56

    Article  CAS  PubMed  Google Scholar 

  50. Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–1974

    Article  CAS  PubMed  Google Scholar 

  51. Perkins WR, Minchey SR, Ahl PL, Janoff AS (1993) The determination of liposome captured volume. Chem Phys Lipids 64:197–217

    Article  CAS  PubMed  Google Scholar 

  52. Puvanendran D, Souabni H, Salvador D, Lambert O, Cece Q, Picard M (2020) Rationale for the quantitative reconstitution of membrane proteins into proteoliposomes. Methods Mol Biol 2168:63–72

    Article  CAS  PubMed  Google Scholar 

  53. Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327

    Article  PubMed  CAS  Google Scholar 

  54. Bertini I, Engelke F, Gonnelli L, Knott B, Luchinat C, Osen D, Ravera E (2012) On the use of ultracentrifugal devices for sedimented solute NMR. J Biomol NMR 54:123–127

    Article  CAS  PubMed  Google Scholar 

  55. Sarramegna V, Demange P, Milon A, Talmont F (2002) Optimizing functional versus total expression of the human mu-opioid receptor in Pichia pastoris. Protein Expr Purif 24:212–220

    Article  CAS  PubMed  Google Scholar 

  56. André N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, Magnin T, Pattus F, Michel H, Wagner R, Reinhart C (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 15:1115–1126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rigaud JL, Lévy D (2003) Reconstitution of membrane proteins into liposomes. Methods Enzymol 372:65–86

    Article  CAS  PubMed  Google Scholar 

  58. Goddard AD, Dijkman PM, Adamson RJ, dos Reis RI, Watts A (2015) Reconstitution of membrane proteins: a GPCR as an example. Methods Enzymol 556:405–424

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors warmly thank Dr. Heddy Soufari (NovAliX, Illkirch, France) for the cryo-TEM analysis of the MLV material. This work was supported by the CNRS, by the University of Strasbourg, by the European Research Council (ERC-2015-CoG GA 648974 to G.P.), and by the EC (project iNext Discovery GA 871037). Access to high-field NMR was cofunded by the CNRS (IR-RMN FR3050). L.G. is supported by a PhD fellowship from ANRT (CIFRE N°2018/1643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barret, L., Schubeis, T., Kugler, V., Guyot, L., Pintacuda, G., Wagner, R. (2022). Production and Preparation of Isotopically Labeled Human Membrane Proteins in Pichia pastoris for Fast-MAS-NMR Analyses. In: Mus-Veteau, I. (eds) Heterologous Expression of Membrane Proteins. Methods in Molecular Biology, vol 2507. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2368-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2368-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2367-1

  • Online ISBN: 978-1-0716-2368-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics