Skip to main content

Engineering Proteins Containing Noncanonical Amino Acids on the Yeast Surface

  • Protocol
  • First Online:
Yeast Surface Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2491))

Abstract

Yeast display has been used to advance many critical research areas, including the discovery of unique protein binders and biological therapeutics. In parallel, noncanonical amino acids (ncAAs) have been used to tailor antibody-drug conjugates and enable discovery of therapeutic leads. Together, these two technologies have allowed for generation of synthetic antibody libraries, where the introduction of ncAAs in yeast-displayed proteins allows for library screening for therapeutically relevant targets. The combination of yeast display with genetically encoded ncAAs increases the available chemistry in proteins and advances applications that require high-throughput strategies. In this chapter, we discuss methods for displaying proteins containing ncAAs on the yeast surface, generating and screening libraries of proteins containing ncAAs, preparing bioconjugates on the yeast surface in large scale, generating and screening libraries of aminoacyl-tRNA synthetases (aaRSs) for encoding ncAAs by using reporter constructs, and characterizing ncAA-containing proteins secreted from yeast. The experimental designs laid out in this chapter are generalizable for discovery of protein binders to a variety of targets and aaRS evolution to continue expanding the genetic code beyond what is currently available in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aaRS:

Aminoacyl-tRNA synthetase

ADC:

Antibody–drug conjugate

cAA:

Canonical amino acid

CuAAC:

Copper-catalyzed azide-alkyne cycloaddition

DIYD:

Drop-in yeast display

DPS:

Dual plasmid system

EcLeuRS:

E. coli leucyl-tRNA synthetase

EcTyrRS:

E. coli tyrosyl-tRNA synthetase

epPCR:

Error-prone PCR

FACS:

Fluorescence-activated cell sorting

Fc:

Fragment crystallizable region

MMF:

Maximum misincorporation efficiency

MS:

Mass spectrometry

ncAA:

Noncanonical amino acid

OTS:

Orthogonal translation system

PCR:

Polymerase chain reaction

PDB:

Protein data bank

POI:

Protein of interest

PylRS:

Pyrrolysyl-tRNA synthetase

RRE:

Relative readthrough efficiency

SPS:

Single plasmid system

References

  1. Van Deventer JA, Le DN, Zhao J, Kehoe HP, Kelly RL (2016) A platform for constructing, evaluating, and screening bioconjugates on the yeast surface. Protein Eng Des Sel 29(11):485–494. https://doi.org/10.1093/protein/gzw029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cherf GM, Cochran JR (2015) Applications of yeast surface display for protein engineering. Methods Mol Biol 1319:155–175. https://doi.org/10.1007/978-1-4939-2748-7_8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Konning D, Kolmar H (2018) Beyond antibody engineering: directed evolution of alternative binding scaffolds and enzymes using yeast surface display. Microb Cell Factories 17(1):32. https://doi.org/10.1186/s12934-018-0881-3

    Article  CAS  Google Scholar 

  4. Galan A, Comor L, Horvatic A, Kules J, Guillemin N, Mrljak V, Bhide M (2016) Library-based display technologies: where do we stand? Mol BioSyst 12(8):2342–2358. https://doi.org/10.1039/c6mb00219f

    Article  CAS  PubMed  Google Scholar 

  5. Bradbury AR, Sidhu S, Dubel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29(3):245–254. https://doi.org/10.1038/nbt.1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bowers PM, Horlick RA, Neben TY, Toobian RM, Tomlinson GL, Dalton JL, Jones HA, Chen A, Altobell L 3rd, Zhang X, Macomber JL, Krapf IP, Wu BF, McConnell A, Chau B, Holland T, Berkebile AD, Neben SS, Boyle WJ, King DJ (2011) Coupling mammalian cell surface display with somatic hypermutation for the discovery and maturation of human antibodies. Proc Natl Acad Sci U S A 108(51):20455–20460. https://doi.org/10.1073/pnas.1114010108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boder ET, Raeeszadeh-Sarmazdeh M, Price JV (2012) Engineering antibodies by yeast display. Arch Biochem Biophys 526(2):99–106. https://doi.org/10.1016/j.abb.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  8. Islam M, Kehoe HP, Lissoos JB, Huang M, Ghadban CE, Berumen Sanchez G, Lane HZ, Van Deventer JA (2021) Chemical diversification of simple synthetic antibodies. ACS Chem Biol 16(2):344–359. https://doi.org/10.1021/acschembio.0c00865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Denard CA, Paresi C, Yaghi R, McGinnis N, Bennett Z, Yi L, Georgiou G, Iverson BL (2021) YESS 2.0, a tunable platform for enzyme evolution, yields highly active TEV protease variants. ACS Synth Biol 10(1):63–71. https://doi.org/10.1021/acssynbio.0c00452

    Article  CAS  PubMed  Google Scholar 

  10. Podracky CJ, An C, DeSousa A, Dorr BM, Walsh DM, Liu DR (2021) Laboratory evolution of a sortase enzyme that modifies amyloid-beta protein. Nat Chem Biol 17(3):317–325. https://doi.org/10.1038/s41589-020-00706-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1(2):755–768. https://doi.org/10.1038/nprot.2006.94

    Article  CAS  PubMed  Google Scholar 

  12. Chen TF, de Picciotto S, Hackel BJ, Wittrup KD (2013) Engineering fibronectin-based binding proteins by yeast surface display. Methods Enzymol 523:303–326. https://doi.org/10.1016/B978-0-12-394292-0.00014-X

    Article  CAS  PubMed  Google Scholar 

  13. Bacon K, Blain A, Bowen J, Burroughs M, McArthur N, Menegatti S, Rao BM (2021) Quantitative yeast-yeast two hybrid for the discovery and binding affinity estimation of protein-protein interactions. ACS Synth Biol 10(3):505–514. https://doi.org/10.1021/acssynbio.0c00472

    Article  CAS  PubMed  Google Scholar 

  14. Walker OS, Elsasser SJ, Mahesh M, Bachman M, Balasubramanian S, Chin JW (2016) Photoactivation of mutant Isocitrate dehydrogenase 2 reveals rapid cancer-associated metabolic and epigenetic changes. J Am Chem Soc 138(3):718–721. https://doi.org/10.1021/jacs.5b07627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao J, Burke AJ, Green AP (2020) Enzymes with noncanonical amino acids. Curr Opin Chem Biol 55:136–144. https://doi.org/10.1016/j.cbpa.2020.01.006

    Article  CAS  PubMed  Google Scholar 

  16. Drienovska I, Roelfes G (2020) Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat Catal 3(3):193–202. https://doi.org/10.1038/s41929-019-0410-8

    Article  CAS  Google Scholar 

  17. Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR (2014) Site-specific antibody drug conjugates for cancer therapy. MAbs 6(1):34–45. https://doi.org/10.4161/mabs.27022

    Article  PubMed  Google Scholar 

  18. Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH, Kazane SA, Halder R, Forsyth JS, Santidrian AF, Stafin K, Lu Y, Tran H, Seller AJ, Biroc SL, Szydlik A, Pinkstaff JK, Tian F, Sinha SC, Felding-Habermann B, Smider VV, Schultz PG (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A 109(40):16101–16106. https://doi.org/10.1073/pnas.1211023109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Budisa N, Schneider T (2019) Expanding the DOPA universe with genetically encoded, mussel-inspired bioadhesives for material sciences and medicine. Chembiochem 20(17):2163–2190. https://doi.org/10.1002/cbic.201900030

    Article  CAS  PubMed  Google Scholar 

  20. Tian F, Lu Y, Manibusan A, Sellers A, Tran H, Sun Y, Phuong T, Barnett R, Hehli B, Song F, DeGuzman MJ, Ensari S, Pinkstaff JK, Sullivan LM, Biroc SL, Cho H, Schultz PG, DiJoseph J, Dougher M, Ma D, Dushin R, Leal M, Tchistiakova L, Feyfant E, Gerber HP, Sapra P (2014) A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci U S A 111(5):1766–1771. https://doi.org/10.1073/pnas.1321237111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhakta S, Raab H, Junutula JR (2013) Engineering THIOMABs for site-specific conjugation of thiol-reactive linkers. Methods Mol Biol 1045:189–203. https://doi.org/10.1007/978-1-62703-541-5_11

    Article  PubMed  Google Scholar 

  22. Rezhdo A, Islam M, Huang M, Van Deventer JA (2019) Future prospects for noncanonical amino acids in biological therapeutics. Curr Opin Biotechnol 60:168–178. https://doi.org/10.1016/j.copbio.2019.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Deventer JA, Kelly RL, Rajan S, Wittrup KD, Sidhu SS (2015) A switchable yeast display/secretion system. Protein Eng Des Sel 28(10):317–325. https://doi.org/10.1093/protein/gzv043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stieglitz JT, Kehoe HP, Lei M, Van Deventer JA (2018) A robust and quantitative reporter system to evaluate noncanonical amino acid incorporation in yeast. ACS Synth Biol 7(9):2256–2269. https://doi.org/10.1021/acssynbio.8b00260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Potts KA, Stieglitz JT, Lei M, Van Deventer JA (2020) Reporter system architecture affects measurements of noncanonical amino acid incorporation efficiency and fidelity. Mol Syst Des Eng 5(2):573–588. https://doi.org/10.1039/c9me00107g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Deventer JA, Wittrup KD (2014) Yeast surface display for antibody isolation: library construction, library screening, and affinity maturation. Methods Mol Biol 1131:151–181. https://doi.org/10.1007/978-1-62703-992-5_10

    Article  CAS  PubMed  Google Scholar 

  27. Hancock SM, Uprety R, Deiters A, Chin JW (2010) Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J Am Chem Soc 132(42):14819–14824. https://doi.org/10.1021/ja104609m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wiltschi B (2016) Incorporation of non-canonical amino acids into proteins in yeast. Fungal Genet Biol 89:137–156. https://doi.org/10.1016/j.fgb.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  29. Johnson JA, Lu YY, Van Deventer JA, Tirrell DA (2010) Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr Opin Chem Biol 14(6):774–780. https://doi.org/10.1016/j.cbpa.2010.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Q, Wang L (2008) New methods enabling efficient incorporation of unnatural amino acids in yeast. J Am Chem Soc 130(19):6066–6067. https://doi.org/10.1021/ja800894n

    Article  CAS  PubMed  Google Scholar 

  31. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557. https://doi.org/10.1038/nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Mathias A, Stavrou S, Neville DM Jr (2005) A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities. Protein Eng Des Sel 18(7):337–343. https://doi.org/10.1093/protein/gzi036

    Article  CAS  PubMed  Google Scholar 

  33. Stieglitz JT, Van Deventer JA (2022) Incorporating, Quantifying, and Leveraging Noncanonical Amino Acids in Yeast. Methods Mol Biol 2394:377–432. https://doi.org/10.1007/978-1-0716-1811-0_21

  34. Adams JJ, Nelson B, Sidhu SS (2014) Recombinant genetic libraries and human monoclonal antibodies. Methods Mol Biol 1060:149–170. https://doi.org/10.1007/978-1-62703-586-6_9

    Article  CAS  PubMed  Google Scholar 

  35. Adams JJ, Sidhu SS (2014) Synthetic antibody technologies. Curr Opin Struct Biol 24:1–9. https://doi.org/10.1016/j.sbi.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  36. Woldring DR, Holec PV, Zhou H, Hackel BJ (2015) High-throughput ligand discovery reveals a Sitewise gradient of diversity in broadly evolved hydrophilic fibronectin domains. PLoS One 10(9):e0138956. https://doi.org/10.1371/journal.pone.0138956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mahon CM, Lambert MA, Glanville J, Wade JM, Fennell BJ, Krebs MR, Armellino D, Yang S, Liu X, O'Sullivan CM, Autin B, Oficjalska K, Bloom L, Paulsen J, Gill D, Damelin M, Cunningham O, Finlay WJ (2013) Comprehensive interrogation of a minimalist synthetic CDR-H3 library and its ability to generate antibodies with therapeutic potential. J Mol Biol 425(10):1712–1730. https://doi.org/10.1016/j.jmb.2013.02.015

    Article  CAS  PubMed  Google Scholar 

  38. Miersch S, Sidhu SS (2012) Synthetic antibodies: concepts, potential and practical considerations. Methods 57(4):486–498. https://doi.org/10.1016/j.ymeth.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  39. Cervettini D, Tang S, Fried SD, Willis JCW, Funke LFH, Colwell LJ, Chin JW (2020) Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs. Nat Biotechnol 38(8):989–999. https://doi.org/10.1038/s41587-020-0479-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Italia JS, Latour C, Wrobel CJJ, Chatterjee A (2018) Resurrecting the bacterial Tyrosyl-tRNA Synthetase/tRNA pair for expanding the genetic code of both E. coli and eukaryotes. Cell. Chem Biol 25(10):1304–1312 e1305. https://doi.org/10.1016/j.chembiol.2018.07.002

    Article  CAS  Google Scholar 

  41. Zheng Y, Mukherjee R, Chin MA, Igo P, Gilgenast MJ, Chatterjee A (2018) Expanding the scope of single- and double-noncanonical amino acid mutagenesis in mammalian cells using orthogonal Polyspecific Leucyl-tRNA Synthetases. Biochemistry 57(4):441–445. https://doi.org/10.1021/acs.biochem.7b00952

    Article  CAS  PubMed  Google Scholar 

  42. Grasso KT, Yeo MJR, Hillenbrand CM, Ficaretta ED, Italia JS, Huang RL, Chatterjee A (2021) Structural robustness affects the Engineerability of aminoacyl-tRNA Synthetases for genetic code expansion. Biochemistry 60(7):489–493. https://doi.org/10.1021/acs.biochem.1c00056

    Article  CAS  PubMed  Google Scholar 

  43. Bratulic S, Badran AH (2017) Modern methods for laboratory diversification of biomolecules. Curr Opin Chem Biol 41:50–60. https://doi.org/10.1016/j.cbpa.2017.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Benatuil L, Perez JM, Belk J, Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23(4):155–159. https://doi.org/10.1093/protein/gzq002

    Article  CAS  PubMed  Google Scholar 

  45. Becker DM, Guarente L (1991) High efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187

    Article  CAS  Google Scholar 

  46. Zhang MS, Brunner SF, Huguenin-Dezot N, Liang AD, Schmied WH, Rogerson DT, Chin JW (2017) Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing. Nat Methods 14(7):729–736. https://doi.org/10.1038/nmeth.4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Drummond DA, Iverson BL, Georgiou G, Arnold FH (2005) Why high-error-rate random mutagenesis libraries are enriched in functional and improved proteins. J Mol Biol 350(4):806–816. https://doi.org/10.1016/j.jmb.2005.05.023

    Article  CAS  PubMed  Google Scholar 

  48. Chin JW (2017) Expanding and reprogramming the genetic code. Nature 550(7674):53–60. https://doi.org/10.1038/nature24031

    Article  CAS  PubMed  Google Scholar 

  49. Wang L (2017) Engineering the genetic code in cells and animals: biological considerations and impacts. Acc Chem Res 50(11):2767–2775. https://doi.org/10.1021/acs.accounts.7b00376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ledbetter MP, Romesberg FE (2018) Editorial overview: expanding the genetic alphabet and code. Curr Opin Chem Biol 46:A1–A2. https://doi.org/10.1016/j.cbpa.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  51. Devaraj NK (2018) The future of bioorthogonal chemistry. ACS Cent Sci 4(8):952–959. https://doi.org/10.1021/acscentsci.8b00251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Agarwal P, Bertozzi CR (2015) Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem 26(2):176–192. https://doi.org/10.1021/bc5004982

    Article  CAS  PubMed  Google Scholar 

  53. Boyce M, Bertozzi CR (2011) Bringing chemistry to life. Nat Methods 8(8):638–642. https://doi.org/10.1038/nmeth.1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bryson DI, Fan C, Guo LT, Miller C, Soll D, Liu DR (2017) Continuous directed evolution of aminoacyl-tRNA synthetases. Nat Chem Biol 13(12):1253–1260. https://doi.org/10.1038/nchembio.2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vargas-Rodriguez O, Sevostyanova A, Soll D, Crnkovic A (2018) Upgrading aminoacyl-tRNA synthetases for genetic code expansion. Curr Opin Chem Biol 46:115–122. https://doi.org/10.1016/j.cbpa.2018.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sungwienwong I, Hostetler ZM, Blizzard RJ, Porter JJ, Driggers CM, Mbengi LZ, Villegas JA, Speight LC, Saven JG, Perona JJ, Kohli RM, Mehl RA, Petersson EJ (2017) Improving target amino acid selectivity in a permissive aminoacyl tRNA synthetase through counter-selection. Org Biomol Chem 15(17):3603–3610. https://doi.org/10.1039/c7ob00582b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hohl A, Karan R, Akal A, Renn D, Liu X, Ghorpade S, Groll M, Rueping M, Eppinger J (2019) Engineering a Polyspecific Pyrrolysyl-tRNA Synthetase by a high throughput FACS screen. Sci Rep 9(1):11971. https://doi.org/10.1038/s41598-019-48357-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Monk JW, Leonard SP, Brown CW, Hammerling MJ, Mortensen C, Gutierrez AE, Shin NY, Watkins E, Mishler DM, Barrick JE (2017) Rapid and inexpensive evaluation of nonstandard amino acid incorporation in Escherichia coli. ACS Synth Biol 6(1):45–54. https://doi.org/10.1021/acssynbio.6b00192

    Article  CAS  PubMed  Google Scholar 

  59. Uchanski T, Zogg T, Yin J, Yuan D, Wohlkonig A, Fischer B, Rosenbaum DM, Kobilka BK, Pardon E, Steyaert J (2019) An improved yeast surface display platform for the screening of nanobody immune libraries. Sci Rep 9(1):382. https://doi.org/10.1038/s41598-018-37212-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122(1):19–27

    Article  CAS  Google Scholar 

  61. Liu ZH, Tyo KEJ, Martinez JL, Petranovic D, Nielsen J (2012) Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng 109(5):1259–1268. https://doi.org/10.1002/bit.24409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Smith C (2005) Striving for purity: advances in protein purification. Nat Methods 2(1):71–77. https://doi.org/10.1038/nmeth0105-71

    Article  CAS  Google Scholar 

  63. Smeekens JM, Xiao H, Wu R (2017) Global analysis of secreted proteins and glycoproteins in Saccharomyces cerevisiae. J Proteome Res 16(2):1039–1049. https://doi.org/10.1021/acs.jproteome.6b00953

    Article  CAS  PubMed  Google Scholar 

  64. Poljak K, Selevsek N, Ngwa E, Grossmann J, Losfeld ME, Aebi M (2018) Quantitative profiling of N-linked glycosylation machinery in yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17(1):18–30. https://doi.org/10.1074/mcp.RA117.000096

    Article  CAS  PubMed  Google Scholar 

  65. An HJ, Froehlich JW, Lebrilla CB (2009) Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr Opin Chem Biol 13(4):421–426. https://doi.org/10.1016/j.cbpa.2009.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3(2):119–128. https://doi.org/10.1038/nrmicro1087

    Article  CAS  PubMed  Google Scholar 

  67. McMahon C, Baier AS, Pascolutti R, Wegrecki M, Zheng S, Ong JX, Erlandson SC, Hilger D, Rasmussen SGF, Ring AM, Manglik A, Kruse AC (2018) Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 25(3):289–296. https://doi.org/10.1038/s41594-018-0028-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Furukawa H, Tanino T, Fukuda H, Kondo A (2006) Development of novel yeast cell surface display system for homo-oligomeric protein by coexpression of native and anchored subunits. Biotechnol Prog 22(4):994–997. https://doi.org/10.1021/bp0601342

    Article  CAS  PubMed  Google Scholar 

  69. Van der Vaart JM, te Biesebeke R, Chapman JW, Toschka HY, Klis FM, Verrips CT (1997) Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl Environ Microbiol 63(2):615–620. https://doi.org/10.1128/AEM.63.2.615-620.1997

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10(11):1303–1310. https://doi.org/10.1093/protein/10.11.1303

    Article  CAS  PubMed  Google Scholar 

  71. Wentz AE, Shusta EV (2008) Enhanced secretion of heterologous proteins from yeast by overexpression of ribosomal subunit RPP0. Biotechnol Prog 24(3):748–756. https://doi.org/10.1021/bp070345m

    Article  CAS  PubMed  Google Scholar 

  72. Pepper LR, Cho YK, Boder ET, Shusta EV (2008) A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 11(2):127–134. https://doi.org/10.2174/138620708783744516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang M, Wang G, Qin J, Petranovic D, Nielsen J (2018) Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. Proc Natl Acad Sci U S A 115(47):E11025–E11032. https://doi.org/10.1073/pnas.1809921115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417. https://doi.org/10.1007/s00253-010-2447-0

    Article  CAS  PubMed  Google Scholar 

  75. Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12(5):491–510. https://doi.org/10.1111/j.1567-1364.2012.00810.x

    Article  CAS  PubMed  Google Scholar 

  76. Kajiwara K, Aoki W, Ueda M (2020) Evaluation of the yeast surface display system for screening of functional nanobodies. AMB Express 10(1):51. https://doi.org/10.1186/s13568-020-00983-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Feinstein SI, Altman S (1978) Context effects on nonsense codon suppression in Escherichia coli. Genetics 88(2):201–219

    Article  CAS  Google Scholar 

  78. Phillips-Jones MK, Watson FJ, Martin R (1993) The 3′ codon context effect on UAG suppressor tRNA is different in Escherichia coli and human cells. J Mol Biol 233(1):1–6. https://doi.org/10.1006/jmbi.1993.1479

    Article  CAS  PubMed  Google Scholar 

  79. Phillips-Jones MK, Hill LS, Atkinson J, Martin R (1995) Context effects on misreading and suppression at UAG codons in human cells. Mol Cell Biol 15(12):6593–6600. https://doi.org/10.1128/mcb.15.12.6593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Namy O, Hatin I, Rousset JP (2001) Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep 2(9):787–793. https://doi.org/10.1093/embo-reports/kve176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwark DG, Schmitt MA, Fisk JD (2018) Dissecting the contribution of release factor interactions to Amber stop codon reassignment efficiencies of the Methanocaldococcus jannaschii orthogonal pair. Genes (Basel) 9(11):546. https://doi.org/10.3390/genes9110546

    Article  CAS  Google Scholar 

  82. Zaccolo M, Williams DM, Brown DM, Gherardi E (1996) An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J Mol Biol 225(4):589–603. https://doi.org/10.1006/jmbi.1996.0049

    Article  Google Scholar 

  83. Steffens DL, Williams JGK (2007) Efficient site-directed saturation mutagenesis using degenerate oligonucleotides. J Biomol Tech 18:147–149

    PubMed  PubMed Central  Google Scholar 

  84. Stemmer WPC (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391. https://doi.org/10.1038/370389a0

    Article  CAS  PubMed  Google Scholar 

  85. Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278:82–87. https://doi.org/10.1126/science.278.5335.82

    Article  CAS  PubMed  Google Scholar 

  86. Arnold FH, Georgiou G (2003) Directed evolution library Creaction, Methods and Protocols. In: Methods in Molecular Biology. Humana Press, Totowa, New Jersey. https://doi.org/10.1385/159259395X

    Chapter  Google Scholar 

  87. Frappier V, Keating AE (2021) Data-driven computational protein design. Curr Opin Struct Biol 69:63–69. https://doi.org/10.1016/j.sbi.2021.03.009

    Article  CAS  PubMed  Google Scholar 

  88. Klein JC, Lajoie MJ, Schwartz JJ, Strauch EM, Nelson J, Baker D, Shendure J (2016) Multiplex pairwise assembly of array-derived DNA oligonucleotides. Nucleic Acids Res 44(5):e43. https://doi.org/10.1093/nar/gkv1177

    Article  CAS  PubMed  Google Scholar 

  89. Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650. https://doi.org/10.1146/annurev.biochem.69.1.617

    Article  CAS  PubMed  Google Scholar 

  90. Woese CR, Olsen GJ, Ibba M, Soll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64(1):202–236. https://doi.org/10.1128/mmbr.64.1.202-236.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rubio Gomez MA, Ibba M (2020) Aminoacyl-tRNA synthetases. RNA 26(8):910–936. https://doi.org/10.1261/rna.071720.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Besanceney-Webler C, Jiang H, Zheng T, Feng L, Soriano del Amo D, Wang W, Klivansky LM, Marlow FL, Liu Y, Wu P (2011) Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew Chem Int Ed Engl 50(35):8051–8056. https://doi.org/10.1002/anie.201101817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Presolski SI, Hong VP, Finn MG (2011) Copper-catalyzed Azide-alkyne click chemistry for bioconjugation. Curr Protoc Chem Biol 3(4):153–162. https://doi.org/10.1002/9780470559277.ch110148

    Article  PubMed  PubMed Central  Google Scholar 

  94. MacConnell AB, Paegel BM (2017) Poisson statistics of combinatorial library sampling predict false discovery rates of screening. ACS Comb Sci 19(8):524–532. https://doi.org/10.1021/acscombsci.7b00061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Willis JCW, Chin JW (2018) Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs. Nat Chem 10(8):831–837. https://doi.org/10.1038/s41557-018-0052-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Andrew SM, Titus JA, Zumstein L (2002) Dialysis and concentration of protein solutions. Curr Protoc Toxicol. appendix 3:a 3H 1-5. https://doi.org/10.1002/0471140856.txa03hs10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Van Deventer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hershman, R.L., Rezhdo, A., Stieglitz, J.T., Van Deventer, J.A. (2022). Engineering Proteins Containing Noncanonical Amino Acids on the Yeast Surface. In: Traxlmayr, M.W. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 2491. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2285-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2285-8_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2284-1

  • Online ISBN: 978-1-0716-2285-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics