Skip to main content

Modification of Single Cells Within Mouse Mammary Gland Derived Acini via Viral Transduction

  • Protocol
  • First Online:
Mammary Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2471))

  • 1049 Accesses

Abstract

The growth of organoid cultures from primary donor tissue is able to recapitulate the original tissue morphology, heterogeneity, and characteristics. Close study of these cultures grants a deeper understanding of the chain of events occurring during disease progression and healthy tissue development. While patient derived organoids are particularly suited to assay for novel treatment options, organoids obtained from model organisms are perfectly suited to establish in-depth analysis technology, including longitudinal imaging approaches, as well as proof of principle studies that rely on a steady source of primary tissue. All these approaches profit from advancements in technology to manipulate cells within an organoid.

Here we present an optimized protocol to generate, culture, and transduce 3D acini obtained from mouse primary mammary epithelial cells via viral vectors. Applying this method, a few cells within the preserved organoid can be marked, changed, and tracked within an unaltered neighboring environment of non-transduced cells to better understand processes like, for instance, tumor initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. https://doi.org/10.1016/j.cell.2016.05.082

    Article  CAS  PubMed  Google Scholar 

  2. Drost J, Clevers H (2018) Organoids in cancer research. Nat Rev Cancer 18(7):407–418. https://doi.org/10.1038/s41568-018-0007-6

    Article  CAS  PubMed  Google Scholar 

  3. Muthuswamy SK (2011) 3D culture reveals a signaling network. Breast Cancer Res 13(1):103. https://doi.org/10.1186/bcr2800

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grunert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4(8):657–665. https://doi.org/10.1038/nrm1175

    Article  CAS  PubMed  Google Scholar 

  5. Knouse KA, Lopez KE, Bachofner M, Amon A (2018) Chromosome segregation fidelity in epithelia requires tissue architecture. Cell 175(1):200–211.e213. https://doi.org/10.1016/j.cell.2018.07.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rowald K, Mantovan M, Passos J, Buccitelli C, Mardin BR, Korbel JO, Jechlinger M, Sotillo R (2016) Negative selection and chromosome instability induced by Mad2 overexpression delay breast cancer but facilitate oncogene-independent outgrowth. Cell Rep 15(12):2679–2691. https://doi.org/10.1016/j.celrep.2016.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jechlinger M, Grünert S, Beug H (2002) Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and expression profiling. J Mammary Gland Biol Neoplasia 7(4):415–432

    Article  PubMed  Google Scholar 

  8. Tanner K, Mori H, Mroue R, Bruni-Cardoso A, Bissell MJ (2012) Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc Natl Acad Sci U S A 109(6):1973–1978. https://doi.org/10.1073/pnas.1119578109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hillreiner M, Muller NI, Koch HM, Schmautz C, Kuster B, Pfaffl MW, Kliem H (2017) Establishment of a 3D cell culture model of primary bovine mammary epithelial cells extracted from fresh milk. In Vitro Cell Dev Biol Anim 53(8):706–720. https://doi.org/10.1007/s11626-017-0169-7

    Article  CAS  PubMed  Google Scholar 

  10. Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda) 32(4):266–277. https://doi.org/10.1152/physiol.00036.2016

    Article  CAS  Google Scholar 

  11. Shaw KRM, Wrobel CN, Brugge JS (2004) Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J Mammary Gland Biol Neoplasia 9(4):297–310. https://doi.org/10.1007/s10911-004-1402-z

    Article  PubMed  Google Scholar 

  12. Sumbal J, Chiche A, Charifou E, Koledova Z, Li H (2020) Primary mammary organoid model of lactation and involution. Front Cell Dev Biol 8:68. https://doi.org/10.3389/fcell.2020.00068

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jarde T, Lloyd-Lewis B, Thomas M, Kendrick H, Melchor L, Bougaret L, Watson PD, Ewan K, Smalley MJ, Dale TC (2016) Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat Commun 7:13207. https://doi.org/10.1038/ncomms13207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen-Ngoc KV, Shamir ER, Huebner RJ, Beck JN, Cheung KJ, Ewald AJ (2015) 3D culture assays of murine mammary branching morphogenesis and epithelial invasion. Methods Mol Biol 1189:135–162. https://doi.org/10.1007/978-1-4939-1164-6_10

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jechlinger M, Podsypanina K, Varmus H (2009) Regulation of transgenes in three-dimensional cultures of primary mouse mammary cells demonstrates oncogene dependence and identifies cells that survive deinduction. Genes Dev 23(14):1677–1688. https://doi.org/10.1101/gad.1801809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Havas KM, Milchevskaya V, Radic K, Alladin A, Kafkia E, Garcia M, Stolte J, Klaus B, Rotmensz N, Gibson TJ, Burwinkel B, Schneeweiss A, Pruneri G, Patil KR, Sotillo R, Jechlinger M (2017) Metabolic shifts in residual breast cancer drive tumor recurrence. J Clin Invest 127(6):2091–2105. https://doi.org/10.1172/JCI89914

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mroue R, Bissell MJ (2013) Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol Biol 945:221–250. https://doi.org/10.1007/978-1-62703-125-7_14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alladin A, Chaible L, Garcia Del Valle L, Sabine R, Loeschinger M, Wachsmuth M, Heriche JK, Tischer C, Jechlinger M (2020) Tracking cells in epithelial acini by light sheet microscopy reveals proximity effects in breast cancer initiation. elife 9. https://doi.org/10.7554/eLife.54066

  19. Jechlinger M (2015) Organotypic culture of untransformed and tumorigenic primary mammary epithelial cells. Cold Spring Harb Protoc 2015(5):457–461. https://doi.org/10.1101/pdb.prot078295

    Article  PubMed  Google Scholar 

  20. Kai F, Drain AP, Weaver VM (2019) The extracellular matrix modulates the metastatic journey. Dev Cell 49(3):332–346. https://doi.org/10.1016/j.devcel.2019.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spill F, Reynolds DS, Kamm RD, Zaman MH (2016) Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 40:41–48. https://doi.org/10.1016/j.copbio.2016.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Jechlinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

del Valle, L.G., Montero, M.G., Jechlinger, M. (2022). Modification of Single Cells Within Mouse Mammary Gland Derived Acini via Viral Transduction. In: Vivanco, M.d. (eds) Mammary Stem Cells. Methods in Molecular Biology, vol 2471. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2193-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2193-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2192-9

  • Online ISBN: 978-1-0716-2193-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics