Skip to main content

Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications

  • Protocol
  • First Online:
Single-Domain Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2446))

Abstract

The presence of unique heavy chain-only antibodies (HCAbs) in camelids was discovered at Vrije Universiteit Brussel (VUB, Brussels, Belgium) at a time when many researchers were exploring the cloning and expression of smaller antigen-binding fragments (Fv and Fab) from hybridoma-derived antibodies. The potential importance of this discovery was anticipated, and efforts were immediately undertaken to understand the emergence and ontogeny of these HCAbs as well as to investigate the applications of the single-domain antigen-binding variable domains of HCAbs (nanobodies). Nanobodies were demonstrated to possess multiple biochemical and biophysical advantages over other antigen-binding antibody fragments and alternative scaffolds. Today, nanobodies have a significant and growing impact on research, biotechnology, and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally-occurring antibodies devoid of light-chains. Nature 363:446–448

    Article  CAS  PubMed  Google Scholar 

  2. Muyldermans S, Atarhouch T, Saldanha J et al (1994) Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng Des Sel 7:1129–1135

    Article  CAS  Google Scholar 

  3. Arbabi-Ghahroudi M, Tanha J, MacKenzie R (2005) Prokaryotic expression of antibodies. Cancer Metastasis Rev 24:501–519

    Article  PubMed  Google Scholar 

  4. van der Linden RHJ, de Geus B, Frenken LGJ et al (2000) Improved production and function of llama heavy chain antibody fragments by molecular evolution. J Biotechnol 80:261–270

    Article  PubMed  Google Scholar 

  5. Skerra A, Plückthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240:1038–1041

    Article  CAS  PubMed  Google Scholar 

  6. Better M, Chang CP, Robinson RR et al (1988) Escherichia coli secretion of an active chimeric antibody fragment. Science 240:1041–1043

    Google Scholar 

  7. Riechmann L, Clark M, Waldmann H et al (1988) Reshaping human antibodies for therapy. Nature 332:323–327

    Article  CAS  PubMed  Google Scholar 

  8. McCafferty J, Griffith AD, Winter G et al (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    Article  CAS  PubMed  Google Scholar 

  9. Arbabi Ghahroudi M, Desmyter A, Wyns L et al (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526

    Article  CAS  PubMed  Google Scholar 

  10. Desmyter A, Transue TR, Arbabi Ghahroudi M et al (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3:803–811

    Article  CAS  PubMed  Google Scholar 

  11. Dumoulin M, Conrath K, Van Meirhaeghe A et al (2002) Single-domain antibody fragments with high conformational stability. Protein Sci 11:500–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nguyen VK, Su C, Muyldermans S et al (2002) Heavy-chain antibodies in Camelidae; a case of evolutionary innovation. Immunogenetics 54:39–47

    Article  CAS  PubMed  Google Scholar 

  13. Nguyen VK, Hamers R, Wyns L et al (1999) Loss of splice consensus signal is responsible for the removal of the entire CH1 domain of the functional camel IGG2A heavy-chain antibodies. Mol Immunol 36:515–524

    Article  CAS  PubMed  Google Scholar 

  14. Woolven BP, Frenken LGJ, van der Logt P et al (1999) The structure of the Ilama heavy chain constant genes reveals a mechanism for heavy-chain antibody formation. Immunogenetics 50:98–101

    Article  CAS  PubMed  Google Scholar 

  15. Henry KA, van Faassen H, Harcus D et al (2019) Llama peripheral B-cell populations producing conventional and heavy chain-only IgG subtypes are phenotypically indistinguishable but immunogenetically distinct. Immunogenetics 71:307–320

    Article  CAS  PubMed  Google Scholar 

  16. Ming L, Wang Z, Yi L et al (2020) Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol Ecol Resour 20:770–780

    Article  CAS  Google Scholar 

  17. Nguyen VK, Hamers R, Wyns L et al (2000) Camel heavy-chain antibodies: diverse germline VHH and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Achour I, Cavelier P, Tichit M et al (2008) Tetrameric and homodimeric camelid IgGs originate from the same IgH locus. J Immunol 181:2001–2009

    Article  CAS  PubMed  Google Scholar 

  19. Deschacht N, De Groeve K, Vincke C et al (2010) A novel promiscuous class of camelid single-domain antibodycontributes to the antigen-binding repertoire. J Immunol 184:5696–5704

    Article  CAS  PubMed  Google Scholar 

  20. Muyldermans S (2021) A guide to: generation and design of nanobodies. FEBS J 288:2084–2102

    Article  CAS  PubMed  Google Scholar 

  21. Fridy PC, Li Y, Keegan S et al (2014) A robust pipeline for rapid production of versatile nanobody repertoires. Nat Methods 11:1253–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Odegrip R, Coomber D, Eldridge B et al (2004) CIS display: in vitro selection of peptides from libraries of protein-DNA complexes. Proc Natl Acad Sci U S A 101:2806–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim HJ, McCoy MR, Majkova Z et al (2012) Isolation of alpaca anti-hapten heavy chain single domain antibodies for development of sensitive immunoassay. Anal Chem 84:1165–1171

    Article  CAS  PubMed  Google Scholar 

  24. Janssens R, Dekker S, Hendriks RW et al (2006) Generation of heavy-chain-only antibodies in mice. Proc Natl Acad Sci U S A 103:15130–15135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Teng Y, Young JL, Edwards B et al (2020) Diverse human VH antibody fragments with bio-therapeutic properties from the Crescendo mouse. New Biotechnol 55:65–76

    Article  CAS  Google Scholar 

  26. Laustsen AH, Greiff V, Karatt-Vellatt A et al (2021) Animal immunization, in vitro display technologies, and machine learning for antibody discovery. Trends Biotechnol, in press. https://doi.org/10.1016/j.tibtech.2021.03.003

  27. Monegal A, Ami D, Martinelli C et al (2009) Immunological applications of single-domain llama recombinant antibodies isolated from a naïve library. Protein Eng Des Sel 22:273–280

    Article  CAS  PubMed  Google Scholar 

  28. Zimmermann I, Egloff P, Hutter CAJ et al (2018) Synthetic single domain antibodies for the conformational trapping of membrane proteins. eLife 7:1–32

    Article  Google Scholar 

  29. Zimmermann I, Egloff P, Hutter CAJ et al (2020) Generation of synthetic nanobodies against delicate proteins. Nat Protoc 15:1707–1741

    Article  CAS  PubMed  Google Scholar 

  30. Egloff P, Zimmermann I, Arnold FM et al (2019) Engineered peptide barcodes for in-depth analyses of binding protein libraries. Nat Methods 16:421–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmidt FI, Hanke L, Morin B et al (2016) Phenotypic lentivirus screens to identify functional single domain antibodies. Nat Microbiol 1:1–21

    Article  Google Scholar 

  32. Mizukami M, Tokunaga H, Onishi H et al (2014) Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expr Purif 105:23–32

    Article  PubMed  Google Scholar 

  33. Li D, Ji F, Huang C et al (2019) High expression achievement of active and robust anti-β2 microglobulin nanobodies via E. coli hosts selection. Molecules 24:2860

    Article  CAS  PubMed Central  Google Scholar 

  34. Mitchell LS, Colwell LJ (2018) Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng Des Sel 31:267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Heeke G, Allosery K, de Brabandere V et al (2017) Nanobodies® as inhaled biotherapeutics for lung diseases. Pharmacol Ther 169:47–56

    Article  PubMed  Google Scholar 

  36. Zhang JR, Wang Y, Dong JX et al (2019) Development of a simple pretreatment immunoassay based on an organic solvent-tolerant nanobody for the detection of carbofuran in vegetable and fruit samples. Biomol Ther 9:576

    CAS  Google Scholar 

  37. Klarenbeek A, El Mazouari K, Desmyter A et al (2015) Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform. MAbs 7:693–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ackaert C, Smiejkowska N, Xavier C et al (2021) Immunogenicity risk profile of nanobodies. Front Immunol 12:e632687

    Article  Google Scholar 

  39. Li T, Bourgeois JP, Celli S et al (2012) Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging. FASEB J 26:3969–3979

    Article  CAS  PubMed  Google Scholar 

  40. De Vos J, Devoogdt N, Lahoutte T et al (2013) Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target. Expert Opin Biol Ther 13:1149–1160

    Article  PubMed  Google Scholar 

  41. Rossotti MA, Bélanger K, Henry KA et al (2021) Immunogenicity and humanization of single-domain antibodies. FEBS J, in press. https://doi.org/10.1111/febs.15809

  42. Vincke C, Loris R, Saerens D et al (2009) General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284:3273–3284

    Article  CAS  PubMed  Google Scholar 

  43. Chanier T, Chames P (2019) Nanobody engineering: toward next generation immunotherapies and immunoimaging of cancer. Antibodies 8:13

    Article  CAS  PubMed Central  Google Scholar 

  44. Roovers RC, Laeremans T, Huang L et al (2007) Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR nanobodies. Cancer Immunol Immunother 56:303–317

    Article  CAS  PubMed  Google Scholar 

  45. Coppieters K, Dreier T, Silence K et al (2006) Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 54:1856–1866

    Article  CAS  PubMed  Google Scholar 

  46. Huston JS, Levinson D, Mudgett-Hunter M et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 85:5879–5883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li D, Ren J, Ji F et al (2020) Peptide linker affecting the activity retention rate of VHH in immunosorbents. Biomol Ther 10:1–12

    Google Scholar 

  48. Conrath KE, Lauwereys M, Wyns L et al (2001) Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem 276:7346–7350

    Article  CAS  Google Scholar 

  49. Zhang J, Tanha J, Hirama T et al (2004) Pentamerization of single-domain antibodies from phage libraries: a novel strategy for the rapid generation of high-avidity antibody reagents. J Mol Biol 335:49–56

    Article  CAS  PubMed  Google Scholar 

  50. Stone E, Hirama T, Tanha J et al (2007) The assembly of single domain antibodies into bispecific decavalent molecules. J Immunol Methods 318:88–94

    Article  CAS  PubMed  Google Scholar 

  51. Fan K, Jiang B, Guan Z et al (2018) Fenobody: a ferritin-displayed nanobody with high apparent affinity and half-life extension. Anal Chem 90:5671–5677

    Article  CAS  PubMed  Google Scholar 

  52. Massa S, Xavier C, De Vos J et al (2014) Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug Chem 25:979–988

    Article  CAS  PubMed  Google Scholar 

  53. Schmohl L, Schwarzer D (2014) Sortase-mediated ligations for the site-specific modification of proteins. Curr Opin Chem Biol 22:122–128

    Article  CAS  PubMed  Google Scholar 

  54. Sarpong K, Bose R (2017) Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins. Anal Biochem 521:55–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rehm FBH, Harmand TJ, Yap K et al (2019) Site-specific sequential protein labeling catalyzed by a single recombinant ligase. J Am Chem Soc 141:17388–17393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rabuka D, Rush J, DeHart G et al (2012) Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat Protoc 7:1052–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Peng Q, Zang B, Zhao W et al (2020) Efficient continuous-flow aldehyde tag conversion using immobilized formylglycine generating enzyme. Cat Sci Technol 10:484–492

    Article  CAS  Google Scholar 

  58. Saerens D, Frederix F, Reekmans G et al (2005) Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing. Anal Chem 77:7547–7555

    Article  CAS  PubMed  Google Scholar 

  59. Khairil Anuar INA, Banerjee A, Keeble AH et al (2019) Spy&Go purification of SpyTag-proteins using pseudo-SpyCatcher to access an oligomerization toolbox. Nat Commun 10:1–13

    Article  CAS  Google Scholar 

  60. Rothbauer U, Zolghadr K, Tillib S et al (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3:887–889

    Article  CAS  PubMed  Google Scholar 

  61. Caussinus E, Kanca O, Affolter M (2012) Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat Struct Mol Biol 19:117–121

    Article  CAS  Google Scholar 

  62. Fulcher LJ, Macartney T, Bozatzi P et al (2016) An affinity-directed protein missile system for targeted proteolysis. Open Biol 6:160255

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fulcher LJ, Hutchinson LD, Macartney TJ et al (2017) Targeting endogenous proteins for degradation through the affinity-directed protein missile system. Open Biol 7:170066

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tang JCY, Szikra T, Kozorovitskiy Y et al (2013) A nanobody-based system using fluorescent proteins as scaffolds for cell-specific gene manipulation. Cell 154:928–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu D, Lee H, Hong J et al (2019) Optogenetic activation of intracellular antibodies for direct modulation of endogenous proteins. Nat Methods 16:1095–1100

    Article  CAS  PubMed  Google Scholar 

  66. Farrants H, Tarnawski M, Müller TG et al (2020) Chemogenetic control of nanobodies. Nat Methods 17:279–282

    Article  CAS  PubMed  Google Scholar 

  67. Uchański T, Masiulis S, Fischer B et al (2021) Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Nat Methods 18:60–68

    Article  PubMed  PubMed Central  Google Scholar 

  68. Herce HD, Deng W, Helma J et al (2013) Visualization and targeted disruption of protein interactions in living cells. Nat Commun 4:2660

    Article  PubMed  Google Scholar 

  69. Bothma JP, Norstad MR, Alamos S et al (2018) LlamaTags: a versatile tool to image transcription factor dynamics in live embryos. Cell 173:1810–1822.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pleiner T, Bates M, Trakhanov S et al (2015) Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4:1–21

    Article  Google Scholar 

  71. Uchański T, Pardon E, Steyaert J (2020) Nanobodies to study protein conformational states. Curr Opin Struct Biol 60:117–123

    Article  PubMed  Google Scholar 

  72. Morales-Yánez F, Trashin S, Hermy M et al (2019) Fast one-step ultrasensitive detection of Toxocara canis antigens by a nanobody-based electrochemical magnetosensor. Anal Chem 91:11582–11588

    Article  PubMed  Google Scholar 

  73. Keyaerts M, Xavier C, Heemskerk J et al (2016) Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2-expression in breast carcinoma. J Nucl Med 57:27–33

    Article  CAS  PubMed  Google Scholar 

  74. D’Huyvetter M, Vincke C, Xavier C et al (2014) Targeted radionuclide therapy with a 177Lu-labeled anti-HER2 nanobody. Theranostics 4:708–720

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dekempeneer Y, Keyaerts M, Krasniqi A et al (2016) Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin Biol Ther 16:1035–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Debie P, Lafont C, Defrise M et al (2020) Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours. J Control Release 317:34–42

    Article  CAS  PubMed  Google Scholar 

  77. Alirahimi E, Kazemi-Lomedasht F, Shahbazzadeh D et al (2018) Nanobodies as novel therapeutic agents in envenomation. Biochim Biophys Acta Gen Subj 1862:2955–2965

    Article  CAS  PubMed  Google Scholar 

  78. Koenig PA, Das H, Liu H et al (2021) Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science 371:eabe6230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang L, Zang B, Huang C et al (2019) One-step preparation of a VHH-based immunoadsorbent for the extracorporeal removal of β2-microglobulin. Molecules 24:2–13

    Google Scholar 

  80. Bao C, Gao Q, Li L et al (2021) The application of nanobody in CAR-T therapy. Biomol Ther 11:1–18

    Google Scholar 

  81. Jovčevska I, Muyldermans S (2019) The therapeutic potential of nanobodies. BioDrugs 34:11–26

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was funded by the National Natural Science Foundation of China (Grant No. U20A20263), the National Key R&D Program of China (2016YFC1103002), and the Fundamental Research Funds for the Central Universities (DUT20LAB121, DUT20YG107, DUT21ZD207, and DUT21LK10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Muyldermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ji, F., Ren, J., Vincke, C., Jia, L., Muyldermans, S. (2022). Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications. In: Hussack, G., Henry, K.A. (eds) Single-Domain Antibodies. Methods in Molecular Biology, vol 2446. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2075-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2075-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2074-8

  • Online ISBN: 978-1-0716-2075-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics