Skip to main content

Pou4f3DTR Mice Enable Selective and Timed Ablation of Hair Cells in Postnatal Mice

  • Protocol
  • First Online:
Developmental, Physiological, and Functional Neurobiology of the Inner Ear

Part of the book series: Neuromethods ((NM,volume 176))

  • 927 Accesses

Abstract

Experimental studies of inner ear development and regeneration, as well as investigations of the influences of sensory input on CNS development, often require a rapid and nearly complete elimination of the hair cells of the inner ear at any postnatal age. Although these cells can be killed by noise trauma or by exposure to ototoxic drugs, both of these interventions are highly variable in their efficacy, resulting in considerable differences in sensory functions among individual animals that receive the same treatment. Furthermore, much current research of the auditory and vestibular systems is conducted using mice, and the ears of mice are relatively resistant to the effects of many ototoxins. In response to these concerns and others, the Rubel and Palmiter labs at the University of Washington developed a transgenic mouse line (called Pou4f3DTR) in which the human form the diphtheria toxin receptor (also known as HB-EGF) is expressed under regulation of the Pou4f3 promoter. Because Pou4f3 is expressed by all hair cells (and relatively few other cells in the body), this mouse model permits the selective elimination of hair cells via 1–2 systemic injections of diphtheria toxin. This mouse line has been successfully used in studies of auditory CNS development and hair cell regeneration. This chapter provides an overview of this model, as well as detailed protocols for its use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Von Bekesy G (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  2. Wever EG, Lawrence M (1954) Physiological acoustics. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  3. Rubel EW (1978) Ontogeny of structure and function in the vertebrate auditory system. In: Jacobson M (ed) Development of sensory systems, vol IX. Springer-Verlag, pp 135–237

    Chapter  Google Scholar 

  4. Born DE, Durham D, Rubel EW (1991) Afferent influences on brainstem auditory nuclei of the chick: nucleus magnocellularis neuronal activity following cochlea removal. Brain Res 557(1-2):37–47. https://doi.org/10.1016/0006-8993(91)90113-a

    Article  CAS  PubMed  Google Scholar 

  5. Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101. https://doi.org/10.1146/annurev.neuro.25.112701.142849

    Article  CAS  PubMed  Google Scholar 

  6. Rubel EW, Parks TN, Zirpel L (2004) Assembling, connecting, and maintaining the cochlear nucleus. In: Parks TN, Rubel EW, Popper AN, Fay RR (eds) Plasticity of the auditory system, Springer handbook of auditory research, vol 23. Springer-Verlag, New York, pp 8–48

    Chapter  Google Scholar 

  7. Harris JA, Rubel EW (2006) Afferent regulation of neuron number in the cochlear nucleus: cellular and molecular analyses of a critical period. Hear Res 216-217:127–137. https://doi.org/10.1016/j.heares.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  8. Tucci DL, Born DE, Rubel EW (1987) Changes in spontaneous activity and CNS morphology associated with conductive and sensorineural hearing loss in chickens. Ann Otol Rhinol Laryngol 96(3 Pt 1):343–350. https://doi.org/10.1177/000348948709600321

    Article  CAS  PubMed  Google Scholar 

  9. Kiang NY-S (1965) Discharge patterns of single fibers in the cat’s auditory nerve. M.I.T Press

    Google Scholar 

  10. Sie KC, Rubel EW (1992) Rapid changes in protein synthesis and cell size in the cochlear nucleus following eighth nerve activity blockade or cochlea ablation. J Comp Neurol 320(4):501–508. https://doi.org/10.1002/cne.903200407

    Article  CAS  PubMed  Google Scholar 

  11. Pasic TR, Rubel EW (1989) Rapid changes in cochlear nucleus cell size following blockade of auditory nerve electrical activity in gerbils. J Comp Neurol 283(4):474–480. https://doi.org/10.1002/cne.902830403

    Article  CAS  PubMed  Google Scholar 

  12. Yuan Y, Shi F, Yin Y, Tong M, Lang H, Polley DB, Liberman MC, Edge AS (2014) Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy. J Assoc Res Otolaryngol 15(1):31–43. https://doi.org/10.1007/s10162-013-0419-7

    Article  PubMed  Google Scholar 

  13. Cox BC, Dearman JA, Brancheck J, Zindy F, Roussel MF, Zuo J (2014) Generation of Atoh1-rtTA transgenic mice: a tool for inducible gene expression in hair cells of the inner ear. Sci Rep 4:6885. https://doi.org/10.1038/srep06885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cotanche DA (1987) Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hear Res 30(2-3):181–195. https://doi.org/10.1016/0378-5955(87)90135-3

    Article  CAS  PubMed  Google Scholar 

  15. Cruz RM, Lambert PR, Rubel EW (1987) Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick cochlea. Arch Otolaryngol Head Neck Surg 113(10):1058–1062. https://doi.org/10.1001/archotol.1987.01860100036017

    Article  CAS  PubMed  Google Scholar 

  16. Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240(4860):1772–1774. https://doi.org/10.1126/science.3381100

    Article  CAS  PubMed  Google Scholar 

  17. Ryals BM, Rubel EW (1988) Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240(4860):1774–1776. https://doi.org/10.1126/science.3381101

    Article  CAS  PubMed  Google Scholar 

  18. Adler HJ, Raphael Y (1996) New hair cells arise from supporting cell conversion in the acoustically damaged chick inner ear. Neurosci Lett 205(1):17–20. https://doi.org/10.1016/0304-3940(96)12367-3

    Article  CAS  PubMed  Google Scholar 

  19. Roberson DW, Alosi JA, Cotanche DA (2004) Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. J Neurosci Res 78(4):461–471. https://doi.org/10.1002/jnr.20271

    Article  CAS  PubMed  Google Scholar 

  20. Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT (1993) Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259(5101):1619–1622. https://doi.org/10.1126/science.8456285

    Article  CAS  PubMed  Google Scholar 

  21. Forge A, Li L, Nevill G (1998) Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. J Comp Neurol 397(1):69–88

    Article  CAS  Google Scholar 

  22. Forge A, Li L, Corwin JT, Nevill G (1993) Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259(5101):1616–1619. https://doi.org/10.1126/science.8456284

    Article  CAS  PubMed  Google Scholar 

  23. Palmiter R (2001) Interrogation by toxin. Nat Biotechnol 19(8):731–732. https://doi.org/10.1038/90770

    Article  CAS  PubMed  Google Scholar 

  24. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y, Mekada E, Kimata Y, Tsuru A, Kohno K (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19(8):746–750. https://doi.org/10.1038/90795

    Article  CAS  PubMed  Google Scholar 

  25. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. J Neurosci 29(45):14077–14085. https://doi.org/10.1523/JNEUROSCI.2845-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 26(7):2115–2123. https://doi.org/10.1523/JNEUROSCI.4985-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3(3):248–268. https://doi.org/10.1007/s101620020028

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hirose K, Sato E (2011) Comparative analysis of combination kanamycin-furosemide versus kanamycin alone in the mouse cochlea. Hear Res 272(1-2):108–116. https://doi.org/10.1016/j.heares.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  29. Wu WJ, Sha SH, McLaren JD, Kawamoto K, Raphael Y, Schacht J (2001) Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat. Hear Res 158(1-2):165–178. https://doi.org/10.1016/s0378-5955(01)00303-3

    Article  CAS  PubMed  Google Scholar 

  30. Brummett RE, Bendrick T, Himes D (1981) Comparative ototoxicity of bumetanide and furosemide when used in combination with kanamycin. J Clin Pharmacol 21(11):628–636. https://doi.org/10.1002/j.1552-4604.1981.tb05675.x

    Article  CAS  PubMed  Google Scholar 

  31. Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR (2008) Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9(1):65–89. https://doi.org/10.1007/s10162-007-0106-7

    Article  PubMed  Google Scholar 

  32. Taylor RR, Nevill G, Forge A (2008) Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol 9(1):44–64. https://doi.org/10.1007/s10162-007-0105-8

    Article  PubMed  Google Scholar 

  33. Fernandez K, Wafa T, Fitzgerald TS, Cunningham LL (2019) An optimized, clinically relevant mouse model of cisplatin-induced ototoxicity. Hear Res 375:66–74. https://doi.org/10.1016/j.heares.2019.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Girod DA, Duckert LG, Rubel EW (1989) Possible precursors of regenerated hair cells in the avian cochlea following acoustic trauma. Hear Res 42(2-3):175–194. https://doi.org/10.1016/0378-5955(89)90143-3

    Article  CAS  PubMed  Google Scholar 

  35. Cotanche DA, Messana EP, Ofsie MS (1995) Migration of hyaline cells into the chick basilar papilla during severe noise damage. Hear Res 91(1-2):148–159. https://doi.org/10.1016/0378-5955(95)00185-9

    Article  CAS  PubMed  Google Scholar 

  36. Slattery EL, Warchol ME (2010) Cisplatin ototoxicity blocks sensory regeneration in the avian inner ear. J Neurosci 30(9):3473–3481. https://doi.org/10.1523/JNEUROSCI.4316-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Slattery EL, Oshima K, Heller S, Warchol ME (2014) Cisplatin exposure damages resident stem cells of the mammalian inner ear. Dev Dyn 243(10):1328–1337. https://doi.org/10.1002/dvdy.24150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Santi PA, Duvall AJ 3rd (1978) Stria vascularis pathology and recovery following noise exposure. Otolaryngology 86(2):ORL354–ORL361. https://doi.org/10.1177/019459987808600229

    Article  CAS  PubMed  Google Scholar 

  39. Sluyter S, Klis SF, de Groot JC, Smoorenburg GF (2003) Alterations in the stria vascularis in relation to cisplatin ototoxicity and recovery. Hear Res 185(1-2):49–56. https://doi.org/10.1016/s0378-5955(03)00260-0

    Article  CAS  PubMed  Google Scholar 

  40. Zheng JL, Stewart RR, Gao WQ (1995) Neurotrophin-4/5, brain-derived neurotrophic factor, and neurotrophin-3 promote survival of cultured vestibular ganglion neurons and protect them against neurotoxicity of ototoxins. J Neurobiol 28(3):330–340. https://doi.org/10.1002/neu.480280306

    Article  CAS  PubMed  Google Scholar 

  41. Calls A, Carozzi V, Navarro X, Monza L, Bruna J (2020) Pathogenesis of platinum-induced peripheral neurotoxicity: insights from preclinical studies. Exp Neurol 325:113141. https://doi.org/10.1016/j.expneurol.2019.113141

    Article  CAS  PubMed  Google Scholar 

  42. Mizisin AP, Powell HC (1995) Toxic neuropathies. Curr Opin Neurol 8(5):367–371. https://doi.org/10.1097/00019052-199510000-00008

    Article  CAS  PubMed  Google Scholar 

  43. Fujioka M, Tokano H, Fujioka KS, Okano H, Edge AS (2011) Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation. J Clin Invest 121(6):2462–2469. https://doi.org/10.1172/JCI45081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cox BC, Chai R, Lenoir A, Liu Z, Zhang L, Nguyen DH, Chalasani K, Steigelman KA, Fang J, Rubel EW, Cheng AG, Zuo J (2014) Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 141(4):816–829. https://doi.org/10.1242/dev.103036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burns JC, Cox BC, Thiede BR, Zuo J, Corwin JT (2012) In vivo proliferative regeneration of balance hair cells in newborn mice. J Neurosci 32(19):6570–6577. https://doi.org/10.1523/JNEUROSCI.6274-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawamoto K, Izumikawa M, Beyer LA, Atkin GM, Raphael Y (2009) Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity. Hear Res 247(1):17–26. https://doi.org/10.1016/j.heares.2008.08.010

    Article  CAS  PubMed  Google Scholar 

  47. Takimoto Y, Imai T, Kondo M, Hanada Y, Uno A, Ishida Y, Kamakura T, Kitahara T, Inohara H, Shimada S (2016) Cisplatin-induced toxicity decreases the mouse vestibulo-ocular reflex. Toxicol Lett 262:49–54. https://doi.org/10.1016/j.toxlet.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  48. Sayyid ZN, Wang T, Chen L, Jones SM, Cheng AG (2019) Atoh1 directs regeneration and functional recovery of the mature mouse vestibular system. Cell Rep 28(2):312–324.e314. https://doi.org/10.1016/j.celrep.2019.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilkerson BA, Artoni F, Lea C, Ritchie K, Ray CA, Bermingham-McDonogh O (2018) Effects of 3,3′-iminodipropionitrile on hair cell numbers in cristae of CBA/CaJ and C57BL/6J mice. J Assoc Res Otolaryngol 19(5):483–491. https://doi.org/10.1007/s10162-018-00687-y

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gianutsos G, Suzdak PD (1985) Neurochemical effects of IDPN on the mouse brain. Neurotoxicology 6(3):159–164

    CAS  PubMed  Google Scholar 

  51. Sandvig K, van Deurs B (2005) Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther 12(11):865–872. https://doi.org/10.1038/sj.gt.3302525

    Article  CAS  PubMed  Google Scholar 

  52. Llorens J, Crofton KM, O’Callaghan JP (1993) Administration of 3,3′-iminodipropionitrile to the rat results in region-dependent damage to the central nervous system at levels above the brain stem. J Pharmacol Exp Ther 265(3):1492–1498

    CAS  PubMed  Google Scholar 

  53. Alwelaie MA, Al-Mutary MG, Siddiqi NJ, Arafah MM, Alhomida AS, Khan HA (2019) Time-course evaluation of iminodipropionitrile-induced liver and kidney toxicities in rats: a biochemical, molecular and histopathological study. Dose Response 17(2):1559325819852233. https://doi.org/10.1177/1559325819852233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Greguske EA, Llorens J, Pyott SJ (2021) Assessment of cochlear toxicity in response to chronic 3,3′-iminodipropionitrile in mice reveals early and reversible functional loss that precedes overt histopathology. Arch Toxicol 95(3):1003–1021. https://doi.org/10.1007/s00204-020-02962-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Greguske EA, Carreres-Pons M, Cutillas B, Boadas-Vaello P, Llorens J (2019) Calyx junction dismantlement and synaptic uncoupling precede hair cell extrusion in the vestibular sensory epithelium during sub-chronic 3,3′-iminodipropionitrile ototoxicity in the mouse. Arch Toxicol 93(2):417–434. https://doi.org/10.1007/s00204-018-2339-0

    Article  CAS  PubMed  Google Scholar 

  56. Sedo-Cabezon L, Jedynak P, Boadas-Vaello P, Llorens J (2015) Transient alteration of the vestibular calyceal junction and synapse in response to chronic ototoxic insult in rats. Dis Model Mech 8(10):1323–1337. https://doi.org/10.1242/dmm.021436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zeng S, Ni W, Jiang H, You D, Wang J, Lu X, Liu L, Yu H, Wu J, Chen F, Li H, Wang Y, Chen Y, Li W (2020) Toxic effects of 3,3′-iminodipropionitrile on vestibular system in adult C57BL/6J mice in vivo. Neural Plast 2020:1823454. https://doi.org/10.1155/2020/1823454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tong L, Strong MK, Kaur T, Juiz JM, Oesterle EC, Hume C, Warchol ME, Palmiter RD, Rubel EW (2015) Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons. J Neurosci 35(20):7878–7891. https://doi.org/10.1523/JNEUROSCI.2179-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tong L, Hume C, Palmiter R, Rubel EW (2011) Ablation of mouse cochlea hair cells by activating the human diphtheria toxin receptor (DTR) gene targeted to the Pou4f3 locus. association for research in otolaryngology meeting. Abstracts 34

    Google Scholar 

  60. Golub JS, Tong L, Ngyuen TB, Hume CR, Palmiter RD, Rubel EW, Stone JS (2012) Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. J Neurosci 32(43):15093–15105. https://doi.org/10.1523/JNEUROSCI.1709-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lord JM, Smith DC, Roberts LM (1999) Toxin entry: how bacterial proteins get into mammalian cells. Cell Microbiol 1(2):85–91. https://doi.org/10.1046/j.1462-5822.1999.00015.x

    Article  CAS  PubMed  Google Scholar 

  62. Holmes RK (2000) Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 181(Suppl 1):S156–S167. https://doi.org/10.1086/315554

    Article  CAS  PubMed  Google Scholar 

  63. Collier RJ (2001) Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39(11):1793–1803. https://doi.org/10.1016/s0041-0101(01)00165-9

    Article  CAS  PubMed  Google Scholar 

  64. Naglich JG, Metherall JE, Russell DW, Eidels L (1992) Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69(6):1051–1061. https://doi.org/10.1016/0092-8674(92)90623-k

    Article  CAS  PubMed  Google Scholar 

  65. Dao DT, Anez-Bustillos L, Adam RM, Puder M, Bielenberg DR (2018) Heparin-binding epidermal growth factor-like growth factor as a critical mediator of tissue repair and regeneration. Am J Pathol 188(11):2446–2456. https://doi.org/10.1016/j.ajpath.2018.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bektas M, Varol B, Nurten R, Bermek E (2009) Interaction of diphtheria toxin (fragment A) with actin. Cell Biochem Funct 27(7):430–439. https://doi.org/10.1002/cbf.1590

    Article  CAS  PubMed  Google Scholar 

  67. Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15(1):245–250. https://doi.org/10.1016/0092-8674(78)90099-5

    Article  CAS  PubMed  Google Scholar 

  68. Mahrt EJ, Perkel DJ, Tong L, Rubel EW, Portfors CV (2013) Engineered deafness reveals that mouse courtship vocalizations do not require auditory experience. J Neurosci 33(13):5573–5583. https://doi.org/10.1523/JNEUROSCI.5054-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell SM, Keithley EM, Rapaport DH, Ryan AF, Rosenfeld MG (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381(6583):603–606. https://doi.org/10.1038/381603a0

    Article  CAS  PubMed  Google Scholar 

  70. Xiang M, Gao WQ, Hasson T, Shin JJ (1998) Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 125(20):3935–3946

    Article  CAS  Google Scholar 

  71. Xiang M, Gan L, Li D, Chen ZY, Zhou L, O’Malley BW Jr, Klein W, Nathans J (1997) Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci U S A 94(17):9445–9450. https://doi.org/10.1073/pnas.94.17.9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keithley EM, Erkman L, Bennett T, Lou L, Ryan AF (1999) Effects of a hair cell transcription factor, Brn-3.1, gene deletion on homozygous and heterozygous mouse cochleas in adulthood and aging. Hear Res 134(1-2):71–76. https://doi.org/10.1016/s0378-5955(99)00070-2

    Article  CAS  PubMed  Google Scholar 

  73. Palmiter RD, Behringer RR, Quaife CJ, Maxwell F, Maxwell IH, Brinster RL (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50(3):435–443. https://doi.org/10.1016/0092-8674(87)90497-1

    Article  CAS  PubMed  Google Scholar 

  74. Breitman ML, Clapoff S, Rossant J, Tsui LC, Glode LM, Maxwell IH, Bernstein A (1987) Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science 238(4833):1563–1565. https://doi.org/10.1126/science.3685993

    Article  CAS  PubMed  Google Scholar 

  75. Mellado Lagarde MM, Cox BC, Fang J, Taylor R, Forge A, Zuo J (2013) Selective ablation of pillar and deiters’ cells severely affects cochlear postnatal development and hearing in mice. J Neurosci 33(4):1564–1576. https://doi.org/10.1523/JNEUROSCI.3088-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pan H, Song Q, Huang Y, Wang J, Chai R, Yin S, Wang J (2017) Auditory neuropathy after damage to cochlear spiral ganglion neurons in mice resulting from conditional expression of diphtheria toxin receptors. Sci Rep 7(1):6409. https://doi.org/10.1038/s41598-017-06600-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaur T, Zamani D, Tong L, Rubel EW, Ohlemiller KK, Hirose K, Warchol ME (2015) Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci 35(45):15050–15061. https://doi.org/10.1523/JNEUROSCI.2325-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang HC, Bergles DE (2015) Spontaneous activity in the developing auditory system. Cell Tissue Res 361(1):65–75. https://doi.org/10.1007/s00441-014-2007-5

    Article  CAS  PubMed  Google Scholar 

  79. Kaur T, Hirose K, Rubel EW, Warchol ME (2015) Macrophage recruitment and epithelial repair following hair cell injury in the mouse utricle. Front Cell Neurosci 9:150. https://doi.org/10.3389/fncel.2015.00150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Weatherstone JH, Kopp-Scheinpflug C, Pilati N, Wang Y, Forsythe ID, Rubel EW, Tempel BL (2017) Maintenance of neuronal size gradient in MNTB requires sound-evoked activity. J Neurophysiol 117(2):756–766. https://doi.org/10.1152/jn.00528.2016

    Article  PubMed  Google Scholar 

  81. Qian ZJ, Ricci AJ (2020) Effects of cochlear hair cell ablation on spatial learning/memory. Sci Rep 10(1):20687. https://doi.org/10.1038/s41598-020-77803-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bucks SA, Cox BC, Vlosich BA, Manning JP, Nguyen TB, Stone JS (2017) Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. elife 6. https://doi.org/10.7554/eLife.18128

  83. González-Garrido A, Pujol R, Ramirez OL, Finkbeiner C, Eatock RA, Stone JS (2021) The differentiation status of hair cells that regenerate naturally in the vestibular inner ear of the adult mouse. J Neurosci. https://doi.org/10.1523/JNEUROSCI.3127-20.2021

  84. Eatock RA, Songer JE (2011) Vestibular hair cells and afferents: two channels for head motion signals. Annu Rev Neurosci 34:501–534. https://doi.org/10.1146/annurev-neuro-061010-113710

    Article  CAS  PubMed  Google Scholar 

  85. Desai SS, Zeh C, Lysakowski A (2005) Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. J Neurophysiol 93(1):251–266. https://doi.org/10.1152/jn.00746.2003

    Article  PubMed  Google Scholar 

  86. Pujol R, Pickett SB, Nguyen TB, Stone JS (2014) Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs. J Comp Neurol 522(14):3141–3159. https://doi.org/10.1002/cne.23625

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hicks KL, Wisner SR, Cox BC, Stone JS (2020) Atoh1 is required in supporting cells for regeneration of vestibular hair cells in adult mice. Hear Res 385:107838. https://doi.org/10.1016/j.heares.2019.107838

    Article  CAS  PubMed  Google Scholar 

  88. Wu Q, Howell MP, Cowley MA, Palmiter RD (2008) Starvation after AgRP neuron ablation is independent of melanocortin signaling. Proc Natl Acad Sci U S A 105(7):2687–2692. https://doi.org/10.1073/pnas.0712062105

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lin V, Golub JS, Nguyen TB, Hume CR, Oesterle EC, Stone JS (2011) Inhibition of Notch activity promotes nonmitotic regeneration of hair cells in the adult mouse utricles. J Neurosci 31(43):15329–15339. https://doi.org/10.1523/JNEUROSCI.2057-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Borse V, Barton M, Arndt H, Kaur T, Warchol ME (2021) Dynamic patterns of YAP1 expression and cellular localization in the developing and injured utricle. Sci Rep 11(1):2140. https://doi.org/10.1038/s41598-020-77775-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Meyers JR, Corwin JT (2007) Shape change controls supporting cell proliferation in lesioned mammalian balance epithelium. J Neurosci 27(16):4313–4325. https://doi.org/10.1523/JNEUROSCI.5023-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Stone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stone, J.S., Rubel, E.W., Warchol, M.E. (2022). Pou4f3DTR Mice Enable Selective and Timed Ablation of Hair Cells in Postnatal Mice. In: Groves, A.K. (eds) Developmental, Physiological, and Functional Neurobiology of the Inner Ear. Neuromethods, vol 176. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2022-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2022-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2021-2

  • Online ISBN: 978-1-0716-2022-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics