Skip to main content

In Silico Prediction of Chemically Induced Mutagenicity: A Weight of Evidence Approach Integrating Information from QSAR Models and Read-Across Predictions

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2425))

Abstract

Information on genotoxicity is an essential piece of information in the framework of several regulations aimed at evaluating chemical toxicity. In this context, QSAR models that can predict Ames genotoxicity can conveniently provide relevant information. Indeed, they can be straightforwardly and rapidly used for predicting the presence or absence of genotoxic hazards associated with the interactions of chemicals with DNA. Nevertheless, and despite their ease of use, the main interpretative challenge is related to a critical assessment of the information that can be gathered, thanks to these tools. This chapter provides guidance on how to use freely available QSAR and read-across tools provided by VEGA HUB and on how to interpret their predictions according to a weight-of-evidence approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore MM, Myers MB, Heflich RH (2000) Mutagenesis and genetic toxicology. In: Williams PL, James RC, Roberts SM (eds) Principles of toxicology: environmental and industrial applications. Wiley-Interscience, New York, pp 239–264

    Google Scholar 

  2. Sutter A, Amberg A, Boyer S, Brigo A, Contrera JF, Custer LL, Dobo KL, Gervais V, Glowienke S, van Gompel J, Greene N, Muster W, Nicolette J, Reddy MV, Thybaud V, Vock E, White AT, Müller L (2013) Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. Regul Toxicol Pharmacol 67(1):39–52. https://doi.org/10.1016/j.yrtph.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  3. EC (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, The European Parliament and the Council of the European Union

    Google Scholar 

  4. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat Res 31(6):347–364

    Article  CAS  Google Scholar 

  5. Claxton LD, Umbuzeiro Gde A, DeMarini DM (2010) The salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ Health Perspect 118(11):1515–1522

    Article  Google Scholar 

  6. Benigni R, Bossa C, Battistelli CL, Tcheremenskaia O (2013) IARC classes 1 and 2 carcinogens are successfully identified by an alternative strategy that detects DNA-reactivity and cell transformation ability of chemicals. Mutat Res 758(1–2):56–61. https://doi.org/10.1016/j.mrgentox.2013.09.006

    Article  CAS  Google Scholar 

  7. OECD (1997) Bacterial reverse mutation test. OECD, Paris

    Google Scholar 

  8. Piegorsch WW, Zeiger E (1991) Measuring intra-assay agreement for the ames salmonella assay. In: Hothorn L (ed) Statistical methods in toxicology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 35–41

    Chapter  Google Scholar 

  9. Sushko I, Novotarskyi S, Korner R, Pandey AK, Cherkasov A, Li J, Gramatica P, Hansen K, Schroeter T, Muller KR, Xi L, Liu H, Yao X, Oberg T, Hormozdiari F, Dao P, Sahinalp C, Todeschini R, Polishchuk P, Artemenko A, Kuz’min V, Martin TM, Young DM, Fourches D, Muratov E, Tropsha A, Baskin I, Horvath D, Marcou G, Muller C, Varnek A, Prokopenko VV, Tetko IV (2010) Applicability domains for classification problems: benchmarking of distance to models for Ames mutagenicity set. J Chem Inf Model 50(12):2094–2111

    Article  CAS  Google Scholar 

  10. Miller EC, Miller JA (1981) Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47(10):2327–2345. https://doi.org/10.1002/1097-0142(19810515)47:10<2327::aid-cncr2820471003>3.0.co;2-z

    Article  CAS  PubMed  Google Scholar 

  11. VEGA QSAR. (2021). https://www.vegahub.eu/download/. Accessed 17/03/2021

  12. SMILES Simplified Molecular Input Line Entry System. (2021). Accessed 17 March 2021

    Google Scholar 

  13. VEGA ZZ Molecular Modeling Toolkit. (2021). https://www.ddl.unimi.it/cms/index.php?Software_projects:VEGA_ZZ. Accessed 17 March 2021

  14. ACD/ChemSketch for Academic and Personal Use. (2021). https://www.acdlabs.com/resources/freeware/chemsketch/. Accessed 17 March 2021

  15. Marvin A (2021) Full featured chemical editor for making science accessible on all platforms. https://chemaxon.com/products/marvin. Accessed 17 March 2021

  16. OECD (2021) The OECD QSAR Toolbox. http://www.oecd.org/chemicalsafety/oecd-qsar-toolbox.htm. Accessed 17 March 2021

  17. Mombelli E, Devillers J (2010) Evaluation of the OECD (Q)SAR application toolbox and Toxtree for predicting and profiling the carcinogenic potential of chemicals. SAR QSAR Environ Res 21(7–8):731–752. https://doi.org/10.1080/1062936x.2010.528598

    Article  CAS  PubMed  Google Scholar 

  18. Benfenati E, Pardoe S, Martin T, Gonella Diaza R, Lombardo A, Manganaro A, Gissi A (2013) Using toxicological evidence from QSAR models in practice. ALTEX 30(1):19–40

    Article  Google Scholar 

  19. Benigni R, Bossa C, Jeliazkova N, Netzeva T, Worth A (2008) Benigni/Bossa rulebase for mutagenicity and carcinogenicity—A module of Toxtree. https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/benigni-bossa-rulebase-mutagenicity-and-carcinogenicity-module-toxtree. Accessed 17 March 2021

  20. Benigni R, Bossa C, Richard AM, Yang C (2008) A novel approach: chemical relational databases, and the role of the ISSCAN database on assessing chemical carcinogenicity. Ann Ist Super Sanita 44(1):48–56

    CAS  PubMed  Google Scholar 

  21. Ferrari T, Gini G (2010) An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts. Chem Cent J 4(Suppl 1):S2. https://doi.org/10.1186/1752-153x-4-s1-s2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kazius J, McGuire R, Bursi R (2005) Derivation and validation of toxicophores for mutagenicity prediction. J Med Chem 48(1):312–320. https://doi.org/10.1021/jm040835a

    Article  CAS  PubMed  Google Scholar 

  23. Ferrari T, Cattaneo D, Gini G, Golbamaki Bakhtyari N, Manganaro A, Benfenati E (2013) Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction. SAR QSAR Environ Res 24(5):365–383. https://doi.org/10.1080/1062936x.2013.773376

    Article  CAS  PubMed  Google Scholar 

  24. Hansen K, Mika S, Schroeter T, Sutter A, ter Laak A, Steger-Hartmann T, Heinrich N, Müller K-R (2009) Benchmark data set for in silico prediction of Ames mutagenicity. J Chem Inf Model 49(9):2077–2081. https://doi.org/10.1021/ci900161g

    Article  CAS  PubMed  Google Scholar 

  25. Honma M, Kitazawa A, Cayley A, Williams RV, Barber C, Hanser T, Saiakhov R, Chakravarti S, Myatt GJ, Cross KP, Benfenati E, Raitano G, Mekenyan O, Petkov P, Bossa C, Benigni R, Battistelli CL, Giuliani A, Tcheremenskaia O, DeMeo C, Norinder U, Koga H, Jose C, Jeliazkova N, Kochev N, Paskaleva V, Yang C, Daga PR, Clark RD, Rathman J (2019) Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR international challenge project. Mutagenesis 34(1):3–16

    Article  CAS  Google Scholar 

  26. Benfenati E, Chaudhry Q, Gini G, Dorne JL (2019) Integrating in silico models and read-across methods for predicting toxicity of chemicals: a step-wise strategy. Environ Int 131:105060. https://doi.org/10.1016/j.envint.2019.105060

    Article  CAS  PubMed  Google Scholar 

  27. Hansen K, Mika S, Schroeter T, Sutter A, ter Laak A, Steger-Hartmann T, Heinrich N, Mueller K-R (2009) Benchmark data set for in silico prediction of Ames mutagenicity. J Chem Inf Model 49(9):2077–2081. https://doi.org/10.1021/ci900161g

    Article  CAS  PubMed  Google Scholar 

  28. Greim H, Bury D, Klimisch HJ, Oeben-Negele M, Ziegler-Skylakakis K (1998) Toxicity of aliphatic amines: structure-activity relationship. Chemosphere 36(2):271–295. https://doi.org/10.1016/S0045-6535(97)00365-2

    Article  CAS  PubMed  Google Scholar 

  29. Byeon WH, Hyun HH, Lee SY (1976) Mutagenicity of nitro furan nitroimidazol and nitrothiazole derivatives on salmonella microsome system. Kor J Microbiol 14:151–158

    CAS  Google Scholar 

  30. Brambilla G, Martelli A (2008) Update on genotoxicity and carcinogenicity testing of 472 marketed pharmaceuticals. Mutat Res 681(2–3):209–229. https://doi.org/10.1016/j.mrrev.2008.09.002

    PubMed  Google Scholar 

  31. Toxicity Estimation Software Tool (TEST). (2021). https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test. Accessed 17 March 2021

  32. Toxtree—Toxic Hazard Estimation by decision tree approach. (2021). http://toxtree.sourceforge.net/. Accessed 17 March 2021

Download references

Acknowledgments

The research for this chapter was financially supported by the LIFE VERMEER project (LIFE16 ENV/IT/OOO167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Mombelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mombelli, E., Raitano, G., Benfenati, E. (2022). In Silico Prediction of Chemically Induced Mutagenicity: A Weight of Evidence Approach Integrating Information from QSAR Models and Read-Across Predictions. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 2425. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1960-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1960-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1959-9

  • Online ISBN: 978-1-0716-1960-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics