Skip to main content

MultiCASE Platform for In Silico Toxicology

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2425))

Abstract

Predictive and computational toxicology, a highly scientific and research-based field, is rapidly progressing with wider acceptance by regulatory agencies around the world. Almost every aspect of the field has seen fundamental changes during the last decade due to the availability of more data, usage, and acceptance of a variety of predictive tools and an increase in the overall awareness. Also, the influence from the recent explosive developments in the field of artificial intelligence has been significant. However, the need for sophisticated, easy to use and well-maintained software platforms for in silico toxicological assessments remains very high. The MultiCASE suite of software is one such platform that consists of an integrated collection of software programs, tools, and databases. While providing easy-to-use and highly useful tools that are relevant at present, it has always remained at the forefront of research and development by inventing new technologies and discovering new insights in the area of QSAR, artificial intelligence, and machine learning. This chapter gives the background, an overview of the software and databases involved, and a brief description of the usage methodology with the aid of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klopman G (1984) Artificial intelligence approach to structure-activity studies. Computer automated structure evaluation of biological activity of organic molecules. J Am Chem Soc 106(24):7315–7321

    Article  CAS  Google Scholar 

  2. Klopman G, Fercu D (1994) Application of the multiple computer automated structure evaluation methodology to a quantitative structure-activity relationship study of acidity. J Comp Chem 15(9):1041–1050

    Article  CAS  Google Scholar 

  3. Chakravarti S, Klopman G, Ivanov J et al (2005) MC4PC—an artificial intelligence approach to the discovery of quantitative structure–toxic activity relationships. In: Helma C (ed) Predictive toxicology, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  4. Chakravarti S, Saiakhov R, Klopman G (2012) Optimizing predictive performance of CASE ultra expert system models using the applicability domains of individual toxicity alerts. J Chem Inf Model 52(10):2609–2618. https://doi.org/10.1021/ci300111r

    Article  CAS  PubMed  Google Scholar 

  5. Chakravarti S, Alla SRM (2019) Descriptor free QSAR modeling using deep learning with long short-term memory neural networks. Front Artif Intell 6(2):17. https://doi.org/10.3389/frai.2019.00017

    Article  Google Scholar 

  6. Chakravarti S, Saiakhov R (2018) Computing similarity between structural environments of mutagenicity alerts. Mutagenesis 34(1):55–65. https://doi.org/10.1093/mutage/gey032

    Article  CAS  Google Scholar 

  7. Hasselgren C, Bercu J, Cayley A et al (2020) Management of pharmaceutical ICH M7 (Q)SAR predictions—the impact of model updates. Regul Toxicol Pharmacol 118:104807. https://doi.org/10.1016/j.yrtph.2020.104807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Honma M, Kitazawa A, Cayley A et al (2019) Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR international challenge project. Mutagenesis 34(1):3–16. https://doi.org/10.1093/mutage/gey031

    Article  CAS  PubMed  Google Scholar 

  9. Landry C, Kim MT, Kruhlak NL et al (2019) Transitioning to composite bacterial mutagenicity models in ICH M7 (Q)SAR analyses. Regul Toxicol Pharmacol 109:104488. https://doi.org/10.1016/j.yrtph.2019.104488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chakravarti S, Saiakhov R (2018) QSAR modeling for Japan NIHS QSAR international collaborative study to predict Ames mutagenicity. Int J Toxicol 37(1):93–93

    Google Scholar 

  11. Kostrubsky V, Kiernan-Lewis J, Saiakhov R (2018) Assessment strategy for mutagenicity of extractable components of medical device by QSAR analyses, published data, and bacterial reverse mutation assay. Int J Toxicol 37(1):103–104

    Google Scholar 

  12. Saiakhov R, Chakravarti S (2017) Developing a 2-component QSAR system to predict in vivo micronucleus induction. Int J Toxicol 36(1):68–68

    Google Scholar 

  13. Saiakhov R, Sedykh A, Chakravarti S (2016) Performance and application of the MultiCASE rule-based expert system. Int J Toxicol 35(1):62–62

    Google Scholar 

  14. Benz RD, Saiakhov R, Chakravarti S et al (2015) Does the prediction from a single (Q)SAR model based on a large comprehensive data set or the combined results from individual models each based on individual ICH S2 bacterial strains produce the better estimate of bacterial mutagenicity for ICH M7? Toxicol Lett 2(238):S167

    Article  Google Scholar 

  15. Saiakhov R, Chakravarti S, Sedykh A (2014) An improved workflow to perform in silico mutagenicity assessment of impurities as per ICH M7 guideline. Toxicol Lett 229:S164

    Article  Google Scholar 

  16. Saiakhov RD, Klopman G (2010) Benchmark performance of MultiCASE Inc. software in Ames mutagenicity set. J Chem Inf Model 50(9):1521. https://doi.org/10.1021/ci1000899

    Article  CAS  PubMed  Google Scholar 

  17. Chakravarti SK, Klopman G (2009) Finding relevant genes involved in the cytotoxicity mechanisms of anticancer biophores. Curr Comput Aided Drug Des 5:215–224. https://doi.org/10.2174/157340909789577883

    Article  CAS  Google Scholar 

  18. Matthews EJ, Kruhlak NL, Cimino MC et al (2009) An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. Identification of carcinogens using surrogate endpoints. Regul Toxicol Pharmacol 44:83–96. https://doi.org/10.1016/j.yrtph.2005.11.003

    Article  CAS  Google Scholar 

  19. Chakravarti SK, Klopman G (2008) A structural analysis of the differential cytotoxicity of chemicals in the NCI-60 cancer cell lines. Bioorg Med Chem 16:4052–4063. https://doi.org/10.1016/j.bmc.2008.01.024

    Article  CAS  PubMed  Google Scholar 

  20. Matthews E, Kruhlak N, Benz R et al (2008) Combined use of MC4PC, MDL-QSAR, BioEpisteme, leadscope PDM, and Derek for Windows software to achieve high-performance, high-confidence, mode of action–based predictions of chemical carcinogenesis in rodents. Toxicol Mech Methods 18(2–3):189–206. https://doi.org/10.1080/15376510701857379

    Article  CAS  PubMed  Google Scholar 

  21. Klopman G, Zhu H, Fuller MA et al (2004) Searching for an enhanced predictive tool for mutagenicity. SAR QSAR Environ Res 15:251–263. https://doi.org/10.1080/10629360410001724897

    Article  CAS  PubMed  Google Scholar 

  22. Klopman G, Chakravarti SK, Zhu H et al (2004) ESP: a method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases. J Chem Inf Comp Sci 44:704–715. https://doi.org/10.1021/ci030298n

    Article  CAS  Google Scholar 

  23. Klopman G, Chakravarti SK, Harris N et al (2003) In-silico screening of high production volume chemicals for mutagenicity using the MCASE QSAR expert system. SAR QSAR Environ Res 14:165–180. https://doi.org/10.1080/1062936031000073171

    Article  CAS  PubMed  Google Scholar 

  24. Grant SG, Zhang YP, Klopman G et al (2000) Modeling the mouse lymphoma forward mutational assay: the Gene-Tox program database. Mutat Res 465:201–229. https://doi.org/10.1016/s1383-5718(99)00186-2

    Article  CAS  PubMed  Google Scholar 

  25. Rosenkranz HS, Klopman G, Zhang YP et al (1999) Relationship between allergic contact dermatitis and electrophilicity. Environ Health Perspect 107(2):129–132. https://doi.org/10.1289/ehp.99107129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Girireddy M, Chakravarti S, Saiakhov R (2019) Prediction of endocrine disruption via QSAR modeling of androgen, estrogen, and aryl hydrocarbon receptor binding. Toxicol Lett 314:S278–S278

    Google Scholar 

  27. Klopman G, Chakravarti SK (2003) Screening of high production volume chemicals for estrogen receptor binding activity (II) by the MultiCASE expert system. Chemosphere 51(6):461–468. https://doi.org/10.1016/S0045-6535(02)00858-5

    Article  CAS  PubMed  Google Scholar 

  28. Girireddy M, Saiakhov R (2020) Development of QSAR modeling for hERG blockers and protectors using large datasets. Society of Toxicology annual meeting, poster presentation. Available via MultiCASE Inc. http://multicase.com/posters#2020-posters. Accessed 19 Mar 2021

  29. Klopman G, Macina O, Levinson M et al (1987) Computer automated structure evaluation of quinolone antibacterial agents. Antimicrob Agents Chemother 31(11):1831–1840. https://doi.org/10.1128/aac.31.11.1831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Klopman G, Macina O, Simon E et al (1986) Computer automated structure evaluation of opiate alkaloids. J Mol Struct 134(3–4):299–308. https://doi.org/10.1016/0166-1280(86)80002-1

    Article  Google Scholar 

  31. Klopman G, Macina O (1987) Computer-automated structure evaluation of antileukemic 9-anilinoacridines. Mol Pharmacol 31(4):457–476

    CAS  PubMed  Google Scholar 

  32. Klopman G, Saiakhov R, Rosenkranz H et al (1999) Multiple computer-automated structure evaluation program study of aquatic toxicity 1: guppy. Environ Toxicol Chem 18(11):2497–2505. https://doi.org/10.1002/etc.5620181116

    Article  CAS  Google Scholar 

  33. Klopman G, Saiakhov R, Rosenkranz HS (2000) Multiple computer-automated structure evaluation study of aquatic toxicity II. Fathead minnow. Environ Toxicol Chem 19:441–447. https://doi.org/10.1002/etc.5620190225

    Article  CAS  Google Scholar 

  34. Klopman G, Stuart SE (2003) Multiple computer-automated structure evaluation study of aquatic toxicity. III. Vibrio fischeri. Environ Toxicol Chem 22:466–472. https://doi.org/10.1002/etc.5620220302

    Article  CAS  PubMed  Google Scholar 

  35. Girireddy M, Saiakhov R (2020) QSAR models for identifying pesticides exhibiting high, moderate, and low toxicity in honey bees. Int J Toxicol 39(1):59–59

    Google Scholar 

  36. Saiakhov RD, Kruhlak NL, Stavitskaya L et al (2019) New QSAR models for predicting drug-induced liver injury with enhanced sensitivity. Int J Toxicol 38(1):68–69

    Google Scholar 

  37. Klopman G, Tu M (1999) Diversity analysis of 14 156 molecules tested by the national cancer institute for anti-HIV activity using the quantitative structure−activity relational expert system MCASE. J Med Chem 42(6):992–998. https://doi.org/10.1021/jm980451i

    Article  CAS  PubMed  Google Scholar 

  38. Ursem C, Kruhlak N, Contrera J et al (2009) Identification of structure–activity relationships for adverse effects of pharmaceuticals in humans. Part A: use of FDA post-market reports to create a database of hepatobiliary and urinary tract toxicities. Regul Toxicol Pharmacol 54(1):1–22. https://doi.org/10.1016/j.yrtph.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  39. Matthews E, Ursem C, Kruhlak N et al (2009) Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans: part B. Use of (Q)SAR systems for early detection of drug-induced hepatobiliary and urinary tract toxicities. Regul Toxicol Pharmacol 54(1):23–42. https://doi.org/10.1016/j.yrtph.2009.01.009

    Article  CAS  PubMed  Google Scholar 

  40. Klopman G, Dimayuga M, Talafous J (1994) META. 1. A program for the evaluation of metabolic transformation of chemicals. J Chem Inf Comp Sci 34:1320–1325. https://doi.org/10.1021/ci00022a014

    Article  CAS  Google Scholar 

  41. Talafous J, Sayre LM, Mieyal JJ et al (1994) META. 2. A dictionary model of mammalian xenobiotic metabolism. J Chem Inf Comp Sci 34:1326–1333. https://doi.org/10.1021/ci00022a015

    Article  CAS  Google Scholar 

  42. Klopman G, Tu M, Talafous J (1997) META. 3. A genetic algorithm for metabolic transform priorities optimization. J Chem Inf Comp Sci 37:329–334. https://doi.org/10.1021/ci9601123

    Article  CAS  Google Scholar 

  43. Klopman G, Tu M, Fan BT (1999) META 4. Prediction of the metabolism of polycyclic aromatic hydrocarbons. Theor Chem Accounts 102:33–38

    Article  CAS  Google Scholar 

  44. Sedykh A, Saiakhov R, Klopman G (2001) META V. A model of photodegradation for the prediction of photoproducts of chemicals under natural-like conditions. Chemosphere 45:971–981. https://doi.org/10.1016/s0045-6535(01)00007-8

    Article  CAS  PubMed  Google Scholar 

  45. Chakravarti S, Sedykh A, Saiakhov R (2017) A QSAR system to predict xenobiotic metabolites and their toxicological properties. Int J Toxicol 36(1):83–83

    Google Scholar 

  46. ICH guideline M7(R1) on assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. Step 5. EMA/CHMP/ICH/83812/2013. 25 Aug 2015

    Google Scholar 

  47. Chakravarti S, Saiakhov R, Sedykh A (2016) CASE ultra konsolidator: a knowledge driven algorithm to assist in expert review of ICH M7 based (Q)SAR analysis of bacterial mutagenicity of impurities. Society of toxicology annual meeting, poster presentation. Available via MultiCASE Inc http://multicase.com/posters#2016-posters. Accessed 19 Mar 2021

  48. Saiakhov R, Chakravarti S (2019) A workflow to assist in expert review and regulatory submissions of ICH M7 (Q)SAR assessment of impurities. Society of toxicology annual meeting, poster presentation. Available via MultiCASE Inc http://multicase.com/posters#2019-posters. Accessed 19 Mar 2021

  49. The Division of Genetics and Mutagenesis, National Institute of Health Sciences, Japan (2021) AMES/QSAR international collaborative study. Available via Japan NIHS. https://www.nihs.go.jp/dgm/amesqsar.html. Accessed 21 Mar 2021

  50. EU (2021) Pesticides database. Available via EFSA. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-db_en. Accessed 21 Mar 2021

  51. ECHA (2021) Registered substances database. Available via ECHA. https://echa.europa.eu/information-on-chemicals/registered-substances?p_p_id=dissregisteredsubstances_WAR_dissregsubsportlet&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_pos=1&p_p_col_count=2&_dissregisteredsubstances_WAR_dissregsubsportlet_javax.portlet.action=dissRegisteredSubstancesAction. Accessed 21 Mar 2021

  52. ECETOC (2017) JETOC—Japan chemical industry ecology-toxicology & information center database. Available via ECETOC. https://www.ecetoc.org/links/jetoc-japan-chemical-industry-ecology-toxicology-information-center/. Accessed 11 Aug 2017

  53. National Institute of Technology and Evaluation (2018) NITE-CHRIP database. Available via NITE. https://www.nite.go.jp/en/chem/chrip/chrip_search/systemTop. Accessed 20 Aug 2018

  54. NTP (2020) Chemical effects in biological systems database. Available via NTP. https://manticore.niehs.nih.gov/cebssearch. Accessed 30 Apr 2020

  55. NLM (2020) Carcinogenic potency database. Available via NLM. https://www.nlm.nih.gov/databases/download/cpdb.html. Accessed 30 May 2020

  56. IARC (2020) Monographs on the identification of carcinogenic hazards to humans. Available via IARC. https://monographs.iarc.who.int/. Accessed 18 May 2020

  57. Saiakhov R, Chakravarti S (2019) Comparative performance of ICH M7 (Q)SAR models built from public domain and proprietary contributors’ data. Genetic toxicology association annual meeting, poster presentation. Available via MultiCASE Inc. http://multicase.com/posters#2019-posters. Accessed 19 Mar 2021

  58. European Medical Agency (2015) Prucalopride assessment report. Available via EMA. https://www.ema.europa.eu/en/documents/variation-report/resolor-h-c-1012-ii-0034-epar-assessment-report-variation_en.pdf. Accessed 19 Mar 2021

  59. FDA (1997) ACETAZOLAMIDE for injection, USP package label. Available via FDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/205358Orig1s000lbl.pdf. Accessed 19 Mar 2021

  60. FDA (2021)Serdexmethylphenidate package label. Available via FDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/212994s000lbl.pdf. Accessed 19 Mar 2021

  61. ECHA Database(2021) Quinazolin-4-ol REACH registration dossier. Available via ECHA. https://echa.europa.eu/registration-dossier/-/registered-dossier/25893/7/7/2. Accessed 19 Mar 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman K. Chakravarti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chakravarti, S.K., Saiakhov, R.D. (2022). MultiCASE Platform for In Silico Toxicology. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 2425. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1960-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1960-5_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1959-9

  • Online ISBN: 978-1-0716-1960-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics