Skip to main content

In Silico Models for Skin Sensitization and Irritation

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2425))

Abstract

The assessment of skin irritation, and in particular of skin sensitization, has undergone an evolution process over the last years, pushing forward to new heights of quality and innovation. Public and commercial in silico tools have been developed for skin sensitization and irritation, introducing the possibility to simplify the evaluation process and the development of topical products within the dogma of the computational methods, representing the new doctrine in the field of risk assessment.

The possibility of using in silico methods is particularly appealing and advantageous due to their high speed and low-cost results.

The most widespread and popular topical products are represented by cosmetics. The European Regulation 1223/2009 on cosmetic products represents a paradigm shift for the safety assessment of cosmetics transitioning from a classical toxicological approach based on animal testing, towards a completely novel strategy, where the use of animals for toxicity testing is completely banned. In this context sustainable alternatives to animal testing need to be developed, especially for skin sensitization and irritation, two critical and fundamental endpoints for the assessment of cosmetics.

The Quantitative Risk Assessment (QRA) methodology and the risk assessment using New Approach Methodologies (NAM) represent new frontiers to further improve the risk assessment process for these endpoints, in particular for skin sensitization.

In this chapter we present an overview of the already existing models for skin sensitization and irritation. Some examples are presented here to illustrate tools and platforms used for the evaluation of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang RK, Raw A, Lionberger R et al (2013) Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J 15(1):41–52. https://doi.org/10.1208/s12248-012-9411-0

    Article  CAS  PubMed  Google Scholar 

  2. OECD (2015) Test No. 404: acute dermal irritation/corrosion, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264242678-en

    Book  Google Scholar 

  3. EU Regulation 1272/2008 (CLP) Annex I-3.4.1.2. https://eur-lex.europa.eu/legalcontent/IT/TXT/?uri=CELEX:02008R1272-20201114

  4. OECD (2014) The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins, OECD series on testing and assessment, no. 168. OECD Publishing, Paris. https://doi.org/10.1787/9789264221444-en

    Book  Google Scholar 

  5. Api AM, Basketter DA, Cadby PA et al (2008) Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients. Regul Toxicol Pharmacol 52(1):3–23. https://doi.org/10.1016/j.yrtph.2008.05.011

    Article  CAS  PubMed  Google Scholar 

  6. SCCS - Scientific Committee on Consumer Safety (2021) SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation 11th revision, 30–31 March 2021, SCCS/1628/21. https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_250.pdf

  7. Johnson C, Ahlberg E, Anger LT et al (2020) Skin sensitization in silico protocol. Regul Toxicol Pharmacol 116:104688. https://doi.org/10.1016/j.yrtph.2020.104688

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chaudhry Q, Piclin N, Cotterill J et al (2010) Global QSAR models of skin sensitisers for regulatory purpose. Chem Cent J 4:S5. https://doi.org/10.1186/1752-153X-4-S1-S5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/

    Google Scholar 

  10. Therneau TM, Atkinson EJ (2015) An introduction to recursive partitioning using the RPART routines. Mayo Foundation, Rochester. https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf

    Google Scholar 

  11. Kode srl (2017) Dragon (software for molecular descriptor calculation) Version 7.0.8. https://chm.kode-solutions.net/

  12. Manganelli S, Roncaglioni A, Mansouri K et al (2019) Development, validation and integration of in silico models to identify androgen active chemicals. Chemosphere 220:204–215. https://doi.org/10.1016/j.chemosphere.2018.12.131

    Article  CAS  PubMed  Google Scholar 

  13. Enoch SJ, Madden JC, Cronin MTD (2008) Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach. SAR QSAR Environ Res 19(5–6):555–578. https://doi.org/10.1080/10629360802348985

    Article  CAS  PubMed  Google Scholar 

  14. Borba JVB, Braga RC, Alves VM et al (2021) Pred-skin: a web portal for accurate prediction of human skin sensitizers. Chem Res Toxicol 34(2):258–267. https://doi.org/10.1021/acs.chemrestox.0c00186

    Article  CAS  PubMed  Google Scholar 

  15. Tropsha A, Golbraikh A (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 13(34):3494–3504. https://doi.org/10.2174/138161207782794257

    Article  CAS  PubMed  Google Scholar 

  16. SciQSAR (2009) Reference guide: statistical analysis and molecular descriptors. Included within the SciMatics SciQSAR software. https://qsardb.food.dtu.dk/db/index.html

  17. Klopman G (1992) MULTICASE 1. A hierarchical computer automated structure evaluation program. Quant Struct Act Relat 11:176–184. https://doi.org/10.1002/qsar.19920110208

    Article  CAS  Google Scholar 

  18. Chakravarti SK, Saiakhov RD, Klopman G (2012) Optimizing predictive performance of CASE ultra expert system models using the applicability domains of individual toxicity alerts. J Chem Inf Model 52:2609–2618. https://doi.org/10.1021/ci300111r

    Article  CAS  PubMed  Google Scholar 

  19. Saiakhov RD, Chakravarti SK, Klopman G (2013) Effectiveness of CASE ultra expert system in evaluating adverse effects of drugs. Mol Inform 32:87–97. https://doi.org/10.1002/minf.201200081

    Article  CAS  PubMed  Google Scholar 

  20. Roberts G, Myatt GJ, Johnson WP et al (2000) LeadScope: software for exploring large sets of screening data. Chem Inf Comput Sci 40:1302–1314. https://doi.org/10.1021/ci0000631

    Article  CAS  Google Scholar 

  21. Roberts DW (2015) Estimating skin sensitization potency from a single dose LLNA. Regul Toxicol Pharmacol 71(3):437–443. https://doi.org/10.1016/j.yrtph.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  22. Golden E, Macmillan DS, Dameron G et al (2020) Evaluation of the global performance of eight in silico skin sensitization models using human data. ALTEX 38(1):033–048. https://doi.org/10.14573/altex.1911261

    Article  Google Scholar 

  23. Patlewicz G, Dimitrov SD, Low LK et al (2007) TIMES-SS--a promising tool for the assessment of skin sensitization hazard. A characterization with respect to the OECD validation principles for (Q)SARs and an external evaluation for predictivity. Regul Toxicol Pharmacol 48(2):225–239. https://doi.org/10.1016/j.yrtph.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  24. Gerner I, Schlegel K, Walker JD et al (2004) Use of physicochemical property limits to develop rules for identifying chemical substances with no skin irritation or corrosion potential. QSAR Comb Sci 23(9):726–733. https://doi.org/10.1002/qsar.200430880

    Article  CAS  Google Scholar 

  25. Hulzebos E, Walker JD, Gerner I et al (2004) Use of structural alerts to develop rules for identifying chemical substances with skin irritation or skin corrosion potential. QSAR Comb Sci 24(3):332–342. https://doi.org/10.1002/qsar.200430905

    Article  CAS  Google Scholar 

  26. Selvestrel G, Robino F, Baderna D et al (2021) SpheraCosmolife: a new tool for the risk assessment of cosmetic products. ALTEX. https://doi.org/10.14573/altex.2010221

  27. SCCS - Scientific Committee on Consumer Safety (2018) SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation 10th revision, 24-25 October 2018, SCCS/1602/18. https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_224.pdf

  28. Dusefante A, Mauro M, Belloni Fortina A et al (2019) (2019). Contact allergy to methylchloroisothiazolinone/methylisothiazolinone in North-Eastern Italy: a temporal trend from 1996 to 2016. J Eur Acad Dermatol Venereol 33(5):912–917. https://doi.org/10.1111/jdv.15453

    Article  CAS  PubMed  Google Scholar 

  29. Raymond J, Konya J, Bakis-Petsoglou S (2016) Lichenoid contact dermatitis secondary to methylisothiazolinone (MI). JAAD Case Rep 2(5):380–383. https://doi.org/10.1016/j.jdcr.2016.06.001

    Article  PubMed Central  PubMed  Google Scholar 

  30. EC- European Commission (2009) Regulation (EC) No.1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Official Journal of European Union. L. 342:59-209. http://data.europa.eu/eli/reg/2009/1223/2020-05-01

  31. IdeaConsult (2009) Toxtree user manual. IdeaConsult. https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/doc/Toxtree_user_manual.pdf. Accessed March 2021

  32. De Groot A, Herxheimer A (1989) Isothiazolinone preservative: cause of a continuing epidemic of cosmetic dermatitis. Lancet 333(8633):P314–P316. https://doi.org/10.1016/S0140-6736(89)91318-4

    Article  Google Scholar 

  33. Magdaleno-Tapial J, Valenzuela-Oñate C, Ortiz-Salvador JM et al (2019) Contact allergy to isothiazolinones epidemic: current situation. Contact Dermatitis 82(2):83–86. https://doi.org/10.1111/cod.13396

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research for this paper was financially supported by the LIFE VERMEER project (LIFE16 ENV/IT/OOO167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Selvestrel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Selvestrel, G., Robino, F., Russo, M.Z. (2022). In Silico Models for Skin Sensitization and Irritation. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 2425. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1960-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1960-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1959-9

  • Online ISBN: 978-1-0716-1960-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics