Skip to main content

In Silico Models for Predicting Acute Systemic Toxicity

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2425))

Abstract

In this chapter, we give a brief overview of the regulatory requirements for acute systemic toxicity information in the European Union, and we review structure-based computational models that are available and potentially useful in the assessment of acute systemic toxicity. Emphasis is placed on quantitative structure–activity relationship (QSAR) models implemented by means of a range of software tools. The most recently published literature models for acute systemic toxicity are also discussed, and perspectives for future developments in this field are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dearden JC, Hewitt M (2021) Prediction of human lethal doses and concentrations of MEIC chemicals from rodent LD50 values: an attempt to make some reparation. Altern Lab Anim 49(1–2):10–21. https://doi.org/10.1177/0261192921994754

  2. Kleandrova V, Luan F, Speck-Planche A, Cordeiro M (2015) In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect. Mini Rev Med Chem 15:677–686. https://doi.org/10.2174/1389557515666150219143604

  3. Devillers J, Devillers H (2009) Prediction of acute mammalian toxicity from QSARs and interspecies correlations. SAR QSAR Environ Res 20:467–500. https://doi.org/10.1080/10629360903278651

    Article  CAS  PubMed  Google Scholar 

  4. Lapenna S, Fuart-Gatnik M, Worth A (2010) Review of QSAR models and software tools for predicting acute and chronic systemic toxicity. EN. Publications Office of the European Union, Luxembourg. http://publications.jrc.ec.europa.eu/repository/

    Google Scholar 

  5. Tsakovska I, Lessigiarska I, Netzeva T, Worth A (2008) A mini review of mammalian toxicity (Q)SAR models. QSAR Combinatorial Sci 27:41–48

    CAS  Google Scholar 

  6. JRC (2020) JRC QSAR model database. European Commission, Joint Research Centre (JRC) [Dataset] PID: http://data.europa.eu/89h/e4ef8d13-d743-4524-a6eb-80e18b58cba4

  7. European Union (2006) Regulation (EC) No 1907/2006 of the European Parliament and the Council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency, amending directive 1999/45/EC and repealing council regulation (EEC) No 793/93 and commission regulation (EC) No 1488/94 as well as council directive 76/769/EEC and commission directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off J Eur Union L396:1–849

    Google Scholar 

  8. European Union (2012) Regulation (EU) no 528/2012 of the European Parliament and of the council of 22 may 2012 concerning the making available on the market and use of biocidal products. Off J Eur Union L 167:1–116

    Google Scholar 

  9. European Union (2009) Regulation (EC) no 1107/2009 of the European Parliament and of the council of 21 October 2009 concerning the placing of plant protection products on the market and repealing council directives 79/117/EEC and 91/414/EEC. Off J Eur Union L309:1–47

    Google Scholar 

  10. European Union (2009) Regulation (EC) no 1223/2009 of the European Parliament and the council of 30 November 2009 on cosmetic products. Off J Eur Union L342:59–209

    Google Scholar 

  11. European Union (2008) Regulation (EC) no 1272/2008 of the European Parliament and of the council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing directives 67/548/EEC and 1999/45/EC, and amending regulation (EC) no 1907/2006. Off J Eur Union L353

    Google Scholar 

  12. ICH (2009) Requirements for registration of pharmaceuticals for human use. Guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals M3(R2). Recommended for adoption at step 4 of the ICH process on June 11, 2009

    Google Scholar 

  13. Robinson S, Delongeas JL, Donald E et al (2008) A European pharmaceutical company initiative challenging the regulatory requirement for acute toxicity studies in pharmaceutical drug development. Regul Toxicol Pharmacol 50:345–352

    PubMed  Google Scholar 

  14. Chapman K, Creton S, Kupferschmidt H et al (2010) The value of acute toxicity studies to support the clinical management of overdose and poisoning: a cross-discipline consensus. Regul Toxicol Pharmacol 58:354–359

    PubMed  Google Scholar 

  15. Prieto P, Burton J, Graepel R et al (2014) EURL ECVAM strategy to replace, reduce and refine the use of animals in the assessment of acute mammalian systemic toxicity. EN. Publications Office of the European Union, Luxembourg. http://publications.jrc.ec.europa.eu/repository/

    Google Scholar 

  16. OECD (2001) Guideline for testing of chemicals, 420, acute oral toxicity – fixed dose method. In: OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris

    Google Scholar 

  17. OECD (2001) Guideline for testing of chemicals, 423, acute oral toxicity – acute toxic class method. In: OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris

    Google Scholar 

  18. OECD (2001) Guideline for testing of chemicals, 425, acute oral toxicity – up-and-down procedure. In: OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris

    Google Scholar 

  19. European Union (2008) Regulation (EC) no 440/2008 of 30 may 2008 laying down test methods pursuant to regulation (EC) no 1907/2006 of the European Parliament and of the council on the registration, evaluation, authorisation and restriction of chemicals (REACH). Off J Eur Union L142

    Google Scholar 

  20. OECD (1987) Guideline for testing of chemicals, 420, acute dermal toxicity. In: OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris

    Google Scholar 

  21. OECD (2009) Guideline for testing of chemicals, 403, acute inhalation toxicity. In: OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris

    Google Scholar 

  22. OECD (2009) Guideline for testing of chemicals, 436, acute inhalation toxicity – acute toxic class method. In: OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris

    Google Scholar 

  23. OECD (2018) Guideline for testing of chemicals, 433: acute inhalation toxicity – fixed concentration procedure, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris

    Google Scholar 

  24. European Union (2014) Commission regulation (EU) no 260/2014 of 24 January 2014 amending, for the purpose of its adaptation to technical progress, regulation (EC) no 440/2008 laying down test methods pursuant to regulation (EC) no 1907/2006 of the European Parliament and of the council on the registration, evaluation, authorisation and restriction of chemicals (REACH). Off J Eur Union L 81:1–253

    Google Scholar 

  25. ECHA – European Chemicals Agency (2017) Endpoint specific guidance (version 6). In: Guidance on information requirements and chemical safety assessment, chapter R.7a. European Chemicals Agency, Helsinki

    Google Scholar 

  26. Fuart-Gatnik M, Worth A (2010) Review of software tools for toxicity prediction. EN. Publications Office of the European Union. http://publications.jrc.ec.europa.eu/repository/

    Google Scholar 

  27. Chakravarti SK, Saiakhov RD, Klopman G (2012) Optimizing predictive performance of CASE ultra expert system models using the applicability domains of individual toxicity alerts. J Chem Inf Model 52:2609–2618

    CAS  PubMed  Google Scholar 

  28. Tunkel J, Mayo K, Austin C et al (2005) Practical considerations on the use of predictive models for regulatory purposes. Environ Sci Technol 39:2188–2199

    CAS  PubMed  Google Scholar 

  29. Roberts G, Myatt GJ, Johnson WP et al (2000) LeadScope: software for exploring large sets of screening data. J Chem Inf Comput Sci 40:1302–1314

    CAS  PubMed  Google Scholar 

  30. Bercu J, Masuda-Herrera MJ, Trejo-Martin A et al (2021) A cross-industry collaboration to assess if acute oral toxicity (Q)SAR models are fit-for-purpose for GHS classification and labelling. Regul Toxicol Pharmacol 120:104843

    CAS  PubMed  Google Scholar 

  31. Yang H, Lou C, Sun L et al (2019) admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 35:1067–1069

    CAS  PubMed  Google Scholar 

  32. Zhu H, Martin TM, Ye L et al (2009) Quantitative structure−activity relationship modeling of rat acute toxicity by oral exposure. Chem Res Toxicol 22:1913–1921

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Drwal MN, Banerjee P, Dunkel M et al (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42:53–58

    Google Scholar 

  35. Greene N, Judson PN, Langowski JJ, Marchant CA (1999) Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ Res 10:299–314

    CAS  PubMed  Google Scholar 

  36. Vedani A, Dobler M, Smieško M (2012) VirtualToxLab - a platform for estimating the toxic potential of drugs, chemicals and natural products. Toxicol Appl Pharmacol 261:142–153

    CAS  PubMed  Google Scholar 

  37. Vedani A, Dobler M, Smieško M (2015) OpenVirtualToxLab—a platform for generating and exchanging in silico toxicity data. Toxicol Lett 232:519–532

    CAS  PubMed  Google Scholar 

  38. Kinsner-Ovaskainen A, Rzepka R, Rudowski R et al (2009) Acutoxbase, an innovative database for in vitro acute toxicity studies. Toxicol In Vitro 23:476–485

    CAS  PubMed  Google Scholar 

  39. Kinsner-Ovaskainen A, Prieto P, Stanzel S, Kopp-Schneider A (2013) Selection of test methods to be included in a testing strategy to predict acute oral toxicity: an approach based on statistical analysis of data collected in phase 1 of the ACuteTox project. Toxicol In Vitro 27:1377–1394

    CAS  PubMed  Google Scholar 

  40. Prieto P, Kinsner-Ovaskainen A, Stanzel S et al (2013) The value of selected in vitro and in silico methods to predict acute oral toxicity in a regulatory context: results from the European project ACuteTox. Toxicol In Vitro 27:357–376

    Google Scholar 

  41. Prieto P, Kinsner-Ovaskainen A (2015) Short commentary to “Human in vivo database now on ACuteTox home page” [Toxicol In Vitro 27 (2013) 2350–2351]. Toxicol In Vitro 29:415. https://doi.org/10.1016/j.tiv.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  42. Hoffmann S, Kinsner-Ovaskainen A, Prieto P et al (2010) Acute oral toxicity: variability, reliability, relevance and interspecies comparison of rodent LD50 data from literature surveyed for the ACuteTox project. Regul Toxicol Pharmacol 58:395–407

    CAS  PubMed  Google Scholar 

  43. Fonger GC, Hakkinen P, Jordan S, Publicker S (2014) The National Library of Medicine’s (NLM) hazardous substances data Bank (HSDB): background, recent enhancements and future plans. Toxicology 325:209–216

    CAS  PubMed  Google Scholar 

  44. ICCVAM (2001) Guidance document on using in vitro data to estimate in vivo starting doses for acute toxicity. NIH publication 01-4500. National Institute of Environmental Health Research Triangle Park, North Carolina. http://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluatiguidanons/acute-systemic-tox/in-vitro/guidance-document/index.html

  45. Kleinstreuer NC, Karmaus A, Mansouri K et al (2018) Predictive models for acute oral systemic toxicity: a workshop to bridge the gap from research to regulation. Comput Toxicol 8:21–24

    PubMed  PubMed Central  Google Scholar 

  46. Zhu H, Ye L, Richard A et al (2009) A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents. Environ Health Perspect 117:1257–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Norlén H, Berggren E, Whelan M, Worth A (2012) An investigation into the use of computational and in vitro methods for acute systemic toxicity prediction. EN. Publications Office of the European Union, Luxembourg

    Google Scholar 

  48. Diaza RG, Manganelli S, Esposito A et al (2015) Comparison of in silico tools for evaluating rat oral acute toxicity. SAR QSAR Environ Res 26:1–27

    CAS  PubMed  Google Scholar 

  49. Nelms MD, Karmaus AL, Patlewicz G (2020) An evaluation of the performance of selected (Q)SARs/expert systems for predicting acute oral toxicity. Comput Toxicol 16:100135

    PubMed  PubMed Central  Google Scholar 

  50. Lessigiarska I, Worth AP, Netzeva TI et al (2006) Quantitative structure-activity-activity and quantitative structure-activity investigations of human and rodent toxicity. Chemosphere 65:1878–1887

    CAS  PubMed  Google Scholar 

  51. Raevsky OA, Grigor’ev VJ, Modina EA, Worth AP (2010) Prediction of acute toxicity to mice by the arithmetic mean toxicity (AMT) modelling approach. SAR QSAR Environ Res 21:265–275

    CAS  PubMed  Google Scholar 

  52. Chavan S, Nicholls IA, Karlsson BC et al (2014) Towards global QSAR model building for acute toxicity: Munro database case study. Int J Mol Sci 15:18162–18174

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu J, Peng J, Wang J et al (2014) Estimation of acute oral toxicity in rat using local lazy learning. J Chem 6:26

    Google Scholar 

  54. Sedykh A, Zhu H, Tang H et al (2011) Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environ Health Perspect 119(3):364–370

    CAS  PubMed  Google Scholar 

  55. Low Y, Sedykh A, Fourches D et al (2013) Integrative chemical-biological read-across approach for chemical hazard classification. Chem Res Toxicol 26:1199–1208

    CAS  PubMed  Google Scholar 

  56. Sullivan K, Allen DG, Clippinger AJ et al (2021) Mind the gaps: prioritizing activities to meet regulatory needs for acute systemic lethality. ALTEX 38(2):327–335. https://doi.org/10.14573/altex.2012121

    Article  PubMed  Google Scholar 

  57. Gadaleta D, Vuković K, Toma C et al (2019) SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. J Cheminform 11:58. https://doi.org/10.1186/s13321-019-0383-2

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ballabio D, Grisoni F, Consonni V, Todeschini R (2019) Integrated QSAR models to predict acute oral systemic toxicity. Mol Inform 38:1800124

    CAS  Google Scholar 

  59. Graham JC, Rodas M, Hillegass J, Schulze G (2021) The performance, reliability and potential application of in silico models for predicting the acute oral toxicity of pharmaceutical compounds. Regul Toxicol Pharmacol 119:104816

    CAS  PubMed  Google Scholar 

  60. Helman G, Shah I, Patlewicz G (2019) Transitioning the generalised read-across approach (GenRA) to quantitative predictions: a case study using acute oral toxicity data. Comput Toxicol 12:100097

    Google Scholar 

  61. Patlewicz G, Ball N, Booth ED et al (2013) Use of category approaches, read-across and (Q)SAR: general considerations. Regul Toxicol Pharmacol 67:1–12

    PubMed  Google Scholar 

  62. Ekwall B, Barile FA, Castano A et al (1998) MEIC evaluation of acute systemic toxicity. Altern Lab Anim 26(Suppl. 2):617–658

    PubMed  Google Scholar 

  63. Spielmann H, Genshow E, Liebsch M, Halle W (1999) Determination of the starting dose for acute oral toxicity (LD50) testing in the up and down procedure (UDP) from cytotoxicity data. Altern Lab Anim 27:957–966

    CAS  PubMed  Google Scholar 

  64. Halle W (2003) The registry of cytotoxicity: toxicity testing in cell cultures to predict acute toxicity (LD50) and to reduce testing in animals. Altern Lab Anim 31:89–198

    CAS  PubMed  Google Scholar 

  65. Clemedson C, Ekwall B (1999) Overview of the final MEIC results: I. The in vitro–in vitro evaluation. Toxicol In Vitro 13:657–663

    CAS  PubMed  Google Scholar 

  66. Prieto P, Graepel R, Gerloff K et al (2019) Investigating cell type specific mechanisms contributing to acute oral toxicity. ALTEX 36:39–64

    PubMed  Google Scholar 

  67. ECVAM EURL (2013) EURL ECVAM recommendation on the 3T3 neutral red uptake cytotoxicity assay for acute oral toxicity testing. EN. Publications Office of the European Union, Luxembourg

    Google Scholar 

  68. Rovida C, Alépée N, Api AM et al (2015) Integrated testing strategies (ITS) for safety assessment. ALTEX 32:25–40

    PubMed  Google Scholar 

  69. Matthews EJ, Ursem CJ, Kruhlak NL et al (2009) Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans: part B. use of (Q)SAR systems for early detection of drug-induced hepatobiliary and urinary tract toxicities. Regul Toxicol Pharmacol 54:23–42

    CAS  PubMed  Google Scholar 

  70. Lee S, Kang Y, Park H et al (2013) Human nephrotoxicity prediction models for three types of kidney injury based on data sets of pharmacological compounds and their metabolites. Chem Res Toxicol 26:1652–1659

    CAS  PubMed  Google Scholar 

  71. Myshkin E, Brennan R, Khasanova T et al (2012) Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical histopathology annotations. Chem Biol Drug Des 80:406–416

    CAS  PubMed  Google Scholar 

  72. Munday R, Smith BL, Munday CM (2007) Structure-activity relationships in the haemolytic activity and nephrotoxicity of derivatives of 1,2- and 1,4-naphthoquinone. J Appl Toxicol 27:262–269

    CAS  PubMed  Google Scholar 

  73. Jolivette LJ, Anders MW (2002) Structure-activity relationship for the biotransformation of Haloalkenes by rat liver microsomal glutathione transferase 1. Chem Res Toxicol 15:1036–1041

    CAS  PubMed  Google Scholar 

  74. Makhaeva GF, Radchenko EV, Palyulin VA et al (2013) Organophosphorus compound esterase profiles as predictors of therapeutic and toxic effects. Chem Biol Interact 203:231–237

    CAS  PubMed  Google Scholar 

  75. Makhaeva GF, Radchenko EV, Baskin P II et al (2012) Combined QSAR studies of inhibitor properties of O-phosphorylated oximes toward serine esterases involved in neurotoxicity, drug metabolism and Alzheimer’s disease. SAR QSAR Environ Res 23:627–647

    CAS  PubMed  Google Scholar 

  76. Stenberg M, Hamers T, Machala M et al (2011) Multivariate toxicity profiles and QSAR modeling of non-dioxin-like PCBs–an investigation of in vitro screening data from ultra-pure congeners. Chemosphere 85:1423–1429

    CAS  PubMed  Google Scholar 

  77. Estrada E, Molina E, Uriarte E (2001) Quantitative structure-toxicity relationships using TOPS-MODE. 2. Neurotoxicity of a non-congeneric series of solvents. SAR QSAR Environ Res 12:445–459

    CAS  PubMed  Google Scholar 

  78. Yazal JE, Rao SN, Mehl A, Slikker W Jr (2001) Prediction of organophosphorus acetylcholinesterase inhibition using three dimensional quantitative structure-activity relationship (3D-QSAR) methods. Toxicol Sci 63:223–232

    PubMed  Google Scholar 

  79. Hosoya J, Tamura K, Muraki N et al (2011) A novel approach for a toxicity prediction model of environmental pollutants by using a quantitative structure-activity relationship method based on toxicogenomics. ISRN Toxicol 2011:515724

    PubMed  PubMed Central  Google Scholar 

  80. Sayes C, Ivanov I (2010) Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal 30:1723–1734

    PubMed  Google Scholar 

  81. Kafoury RM, Huang MJ (2005) Application of quantitative structure activity relationship (QSAR) models to predict ozone toxicity in the lung. Environ Toxicol 20:441–448

    CAS  PubMed  Google Scholar 

  82. Tenorio-Borroto E, Peñuelas-Rivas CG, Vásquez-Chagoyán JC et al (2014) Model for high-throughput screening of drug immunotoxicity–study of the anti-microbial G1 over peritoneal macrophages using flow cytometry. Eur J Med Chem 72:206–220

    CAS  PubMed  Google Scholar 

  83. Yuan J, Pu Y, Yin L (2013) Docking-based three-dimensional quantitative structure-activity relationship (3D-QSAR) predicts binding affinities to aryl hydrocarbon receptor for polychlorinated dibenzodioxins, dibenzofurans, and biphenyls. Environ Toxicol Chem 32:1453–1458

    CAS  PubMed  Google Scholar 

  84. Hui-Ying X, Jian-Wei Z, Gui-Xiang H, Wei W (2010) QSPR/QSAR models for prediction of the physico-chemical properties and biological activity of polychlorinated diphenyl ethers (PCDEs). Chemosphere 80:665–670

    PubMed  Google Scholar 

  85. Crivori P, Pennella G, Magistrelli M et al (2011) Predicting myelosuppression of drugs from in silico models. J Chem Inf Model 51:434–445

    CAS  PubMed  Google Scholar 

  86. Lee HM, Yu MS, Kazmi OSR et al (2019) Computational determination of hERG-related cardiotoxicity of drug candidates. BMC Bioinformatics 20(Suppl 10):250

    PubMed  PubMed Central  Google Scholar 

  87. Anders MW, Dekant W (1998) Glutathione-dependent bioactivation of haloalkenes. Annu Rev Pharmacol Toxicol 38:501–537

    CAS  PubMed  Google Scholar 

  88. Chemi G, Gemma S, Campiani G et al (2017) Computational tool for fast in silico evaluation of hERG K+ channel affinity. Front Chem 5:7

    PubMed  PubMed Central  Google Scholar 

  89. Wang W, MacKinnon R (2017) Cryo-EM structure of the open human ether-a-go-go-related K(+) channel hERG. Cell 169:422–430

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dickson CJ, Velez-Vega C, Duca JS (2020) Revealing molecular determinants of hERG blocker and activator binding. J Chem Inf Model 60(1):192–203

    CAS  PubMed  Google Scholar 

  91. Wang S, Li Y, Xu L et al (2013) Recent developments in computational prediction of HERG blockage. Curr Top Med Chem 13:1317–1326

    CAS  PubMed  Google Scholar 

  92. Jing Y, Easter A, Peters D et al (2015) In silico prediction of hERG inhibition. Future Med Chem 7:571–586

    Google Scholar 

  93. Villoutreix BO, Taboureau O (2015) Computational investigations of hERG channel blockers: new insights and current predictive models. Adv Drug Deliv Rev 15:00022–00028

    Google Scholar 

  94. Garrido A, Lepailleur A, Mignani SM et al (2020) hERG toxicity assessment: useful guidelines for drug design. Eur J Med Chem 195:112290

    CAS  PubMed  Google Scholar 

  95. Yang C, Cronin MTD, Arvidson KB et al (2021) COSMOS next generation - A public knowledge base leveraging chemical and biological data to support the regulatory assessment of chemicals. Comput Toxicol 19:100175 https://doi.org/10.1016/j.comtox.2021.100175

Download references

Acknowledgments

I.T. acknowledges the financial support by the Bulgarian Ministry of Education and Science under the National Research Programme “Healthy Foods for a Strong Bio-Economy and Quality of Life” approved by DCM # 577 / 17.08.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivanka Tsakovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tsakovska, I., Diukendjieva, A., Worth, A.P. (2022). In Silico Models for Predicting Acute Systemic Toxicity. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 2425. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1960-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1960-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1959-9

  • Online ISBN: 978-1-0716-1960-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics