Skip to main content

QSAR Methods

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2425))

Abstract

This chapter introduces the basis of computational chemistry and discusses how computational methods have been extended from physical to biological properties, and toxicology in particular, modeling. Since about three decades, chemical experimentation is more and more replaced by modeling and virtual experimentation, using a large core of mathematics, chemistry, physics, and algorithms. Animal and wet experiments, aimed at providing a standardized result about a biological property, can be mimicked by modeling methods, globally called in silico methods, all characterized by deducing properties starting from the chemical structures. Two main streams of such models are available: models that consider the whole molecular structure to predict a value, namely QSAR (quantitative structure–activity relationships), and models that check relevant substructures to predict a class, namely SAR. The term in silico discovery is applied to chemical design, to computational toxicology, and to drug discovery. Virtual experiments confirm hypotheses, provide data for regulation, and help in designing new chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown N (2009) Chemoinformatics—an introduction for computer scientists. ACM Comput Surv 41(2):8. https://doi.org/10.1145/1459352.1459353

    Article  Google Scholar 

  2. Gasteiger J, Engel T (2003) Chemoinformatics: a textbook. Wiley-VCH, Weinheim, Germany. ISBN: 978-3-527-30681-7

    Book  Google Scholar 

  3. Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? Med Chem 45(19):4350–4358. https://doi.org/10.1021/jm020155c

    Article  CAS  Google Scholar 

  4. Balaban AT (1985) Applications of graph theory in chemistry. J Chem Inf Comput Sci 25:334–343. https://doi.org/10.1021/ci00047a033

    Article  CAS  Google Scholar 

  5. Weininger D (1988) SMILES a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36. https://doi.org/10.1021/ci00057a005

    Article  CAS  Google Scholar 

  6. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Comput Sci 29:97–101. https://doi.org/10.1021/ci00062a008

    Article  CAS  Google Scholar 

  7. Adam D (2002) Chemists synthesize a single naming system. Nature 417:369. https://doi.org/10.1038/417369a

    Article  CAS  PubMed  Google Scholar 

  8. Schlick T (2002) Molecular modeling and simulation: an interdisciplinary guide. Springer-Verlag, New York. ISBN 978-1-4419-6351-2

    Book  Google Scholar 

  9. Chow PHK, Ng RTH, Ogden BE (2008) Using animal model in biomedical Research. 1st edition. World Scientific. https://doi.org/10.1142/6454

  10. Balazs T (1970) Measurement of acute toxicity, in methods in toxicology. Blackwell Scientific Publications, Oxford and Edinburgh

    Google Scholar 

  11. Benfenati E, Gini G (1997) Computational predictive programs (expert systems) in toxicology. Toxicology 119:213–225. https://doi.org/10.1016/s0300-483x(97)03631-7

    Article  CAS  PubMed  Google Scholar 

  12. Hartung T (2009) Toxicology for the twenty-first century. Nature 460(9):208–212. https://doi.org/10.1038/460208a

    Article  CAS  PubMed  Google Scholar 

  13. Livingstone DJ (2000) The characterization of chemical structures using molecular properties. A survey. J Chem Inf Comput Sci 40:195–209. https://doi.org/10.1021/ci990162i

    Article  CAS  PubMed  Google Scholar 

  14. Hansch C, Malony PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with hammett substituent constants with partition coefficents. Nature 194:178–180. https://doi.org/10.1038/194178b0

    Article  CAS  Google Scholar 

  15. Ghose AK, Crippen GM (1986) Atomic physicochemical parameters for three-dimensional structure directed quantitative structure-activity relationships. I. Partition coefficients as a measure of hydrophobicity. J Comp Chem 7:565–577. https://doi.org/10.1021/ci00053a005

    Article  CAS  Google Scholar 

  16. Kubinyi H (2002) From narcosis to hyperspace: the history of QSAR. Quant Struct Act Relat 21:348–356. https://doi.org/10.1002/1521-3838(200210)21:4<348::AID-QSAR348>3.0.CO;2-D

    Article  CAS  Google Scholar 

  17. Karelson M (2000) Molecular Descriptors in QSAR/QSPR. Wiley-VCH, Weinheim, Germany. ISBN: 978-0-471-35168-9

    Google Scholar 

  18. Gadaleta D, Lombardo A, Toma C, Benfenati E (2018) A new semi-automated workflow for chemical data retrieval and quality checking for modeling applications. J Cheminformatics 10(60):1–13. https://doi.org/10.1186/s13321-018-0315-6

    Article  CAS  Google Scholar 

  19. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer-Verlag, New York, NY. ISBN 978-0-387-84858-7

    Book  Google Scholar 

  20. Gini G, Katritzky A (1999) Predictive toxicology of chemicals: experiences and impact of artificial intelligence tools. In: Proc. AAAI spring symposium on predictive toxicology, report SS-99-01. AAAI Press, Menlo Park, CAL. ISBN 978-1-57735-073-6

    Google Scholar 

  21. Héberger K, Rácz A, Bajusz D (2017) Which performance parameters are best suited to assess the predictive ability of models? In Roy K (ed) advances in QSAR modeling, Springer International. ISBN 978-3-319-56850-8

    Google Scholar 

  22. Polishchuk PG (2017) Interpretation of quantitative structure-activity relationships models: past, Present and future. J Chem Inf Model 57(11):2618–2639. https://doi.org/10.1021/acs.jcim.7b00274

    Article  CAS  PubMed  Google Scholar 

  23. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  24. Ashby J (1985) Fundamental structural alerts to potential carcinogenicity or noncarcinogenicity. Environ Mutagen 7:919–921. https://doi.org/10.1002/em.2860070613

    Article  CAS  PubMed  Google Scholar 

  25. Benigni R, Bossa C (2008) Structure alerts for carcinogenicity, and the salmonella assay system: a novel insight through the chemical relational databases technology. Mutat Res 659(3):248–261. https://doi.org/10.1016/j.mrrev.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  26. Ferrari T, Cattaneo D, Gini G, Golbamaki N, Manganaro A, Benfenati E (2013) Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction. SAR QSAR Environ Res 24(5):365–383. https://doi.org/10.1080/1062936X.2013.773376

    Article  CAS  PubMed  Google Scholar 

  27. Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kauffman, San Francisco; CA. https://doi.org/10.1007/BF00993309

    Book  Google Scholar 

  28. Neagu C-D, Gini G (2003). Neuro-fuzzy knowledge integration applied to toxicity prediction. In Jain R, Abraham A, Faucher C, Jan van der Zwaag B (Eds), Innovations in knowledge engineering, advanced knowledge International Pty Ltd, Magill, South Australia, 311-342. ISBN 0 9751004 0 8

    Google Scholar 

  29. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140. https://doi.org/10.1023/A:1018054314350

    Article  Google Scholar 

  30. Polikar R (2006) Ensemble based systems in decision making. IEEE Circ Syst Mag 2006(6):21–45. https://doi.org/10.1016/S0893-6080(05)80023-1

    Article  Google Scholar 

  31. Gini G, Garg T, Stefanelli M (2009) Ensembling regression models to improve their predictivity: a case study in QSAR (quantitative structure activity relationships) with computational chemometrics. Appl Artif Intell 23:261–281. https://doi.org/10.1080/08839510802700847

    Article  Google Scholar 

  32. Friedman J (1997) On bias, variance, 0/1 loss and the curse of dimensionality. Data Mining Knowl Discov 1:55–77. https://doi.org/10.1023/A:1009778005914

    Article  Google Scholar 

  33. Gini G, Franchi AM, Manganaro A, Golbamaki A, Benfenati E (2014) ToxRead: a tool to assist in read across and its use to assess mutagenicity of chemicals. SAR QSAR Enviro Res 25(12):1–13. https://doi.org/10.1080/1062936X.2014.976267

    Article  CAS  Google Scholar 

  34. Benfenati E, Chaudhry Q, Gini G, Dorne JL (2019) Integrating in silico models and read-across methods for predicting toxicity of chemicals: a step-wise strategy. Environ Int 131:105060. https://doi.org/10.1016/j.envint.2019.105060

    Article  CAS  PubMed  Google Scholar 

  35. Toivonen H, Srinivasan A, King RD, Kramer S, Helma C (2003) Statistical evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics 19(10):1183–1193. https://doi.org/10.1093/bioinformatics/btg130

    Article  CAS  PubMed  Google Scholar 

  36. Mayr A, Klambauer G, Unterthiner T, Hochreiter S (2016) DeepTox: toxicity prediction using deep learning. Front Environ Sci 3:80. https://doi.org/10.3389/fenvs.2015.00080

    Article  Google Scholar 

  37. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  38. Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations (ICLR). arXiv:1412.6980v9 [cs.LG] 30 Jan 2017

    Google Scholar 

  39. Das P, Sercu T, Wadhawan K, Padhi I, Gehrmann S, Cipcigan F, Chenthamarakshan V, Strobelt H, dos Santos C, Chen P-Y, Yang YY, Tan JPK, Hedrick J, Crain J, Mojsilovic A (2021) Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat Biomed Eng 5:613–623. https://doi.org/10.1038/s41551-021-00689-x

    Article  CAS  PubMed  Google Scholar 

  40. Goh G, Siegel C, Vishnu A., Hodas NO, Baker N (2017) Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models. arxiv.org/abs/1706.066892017

  41. Gini G, Zanoli F (2020) Machine learning and deep learning methods in ecotoxicological QSAR modeling. In: Roy K (ed) Ecotoxicological QSARs. Humana Press, Springer, New York, pp 111–149. ISBN 978-1-0716-0150-1

    Chapter  Google Scholar 

  42. Goh G, Hodas N, Siegel C, Vishnu A (2018) SMILES2vec: an interpretable general-purpose deep neural network for predicting chemical properties. arXiv:1712.02034v2 [stat.ML]

    Google Scholar 

  43. Gini G, Zanoli F, Gamba A, Raitano G, Benfenati E (2019) Could deep learning in neural networks improve the QSAR models? SAR QSAR Environ Res 30(9):617–642. https://doi.org/10.1080/1062936X.2019.1650827

    Article  CAS  PubMed  Google Scholar 

  44. Chakravarti SK, Radha Mani AS (2019) Descriptor free QSAR modeling using deep learning with long short-term memory neural networks. Front Artif Intell 2:17. https://doi.org/10.3389/frai.2019.00017

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gini G, Hung C, Benfenati E (2021) Big data and deep learning: extracting and revising chemical knowledge from data. In: Basak S, Vracko M (eds) Big data analytics in Chemoinformatics and bioinformatics (with applications to computer-aided drug design, cancer biology, emerging pathogens and computational toxicology). Elsevier, Amsterdam

    Google Scholar 

  46. Johnson AC, Jin X, Nakada N, Sumpter JP (2020) Learning from the past and considering the future of chemicals in the environment. Science 367:384–387. https://doi.org/10.1126/science.aay6637

    Article  CAS  PubMed  Google Scholar 

  47. Gini G (2018) QSAR, what else? In: Nicolotti O (ed) Computational toxicology: methods and protocols, vol 1800. Springer, Clifton, NJ, pp 79–105. ISBN 978-1-4939-7899-1.

    Chapter  Google Scholar 

  48. Pearl J (2003) Statistics and causal inference: a review. Test J 12:281–345. https://doi.org/10.1007/BF02595718

    Article  Google Scholar 

  49. G. Gini G (2020) The QSAR similarity principle in the deep learning era: confirmation or revision?, Found Chem 22: 383–402. DOI: https://doi.org/10.1007/s10698-020-09380-6

  50. Morgan MG (2014) Use (and abuse) of expert elicitation in support of decision making for public policy. PNAS 111(20):7176–7184. https://doi.org/10.1073/pnas.1319946111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benfenati E, Belli M, Borges T, Casimiro E, Cester J, Fernandez A, Gini G, Honma M, Kinzl M, Knauf R, Manganaro A, Mombelli E, Petoumenou MI, Paparella M, Paris P, Raitano G (2016) Results of a round-robin exercise on read-across. SAR QSAR Environ Res 27(5):371–384. https://doi.org/10.1080/1062936X.2016.1178171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Gini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gini, G. (2022). QSAR Methods. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 2425. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1960-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1960-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1959-9

  • Online ISBN: 978-1-0716-1960-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics