Skip to main content

Humanized Patient-Derived Xenograft Models of Ovarian Cancer

  • Protocol
  • First Online:
Ovarian Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2424))

Abstract

In vivo modeling of cancer is a critical step in testing novel therapeutic strategies to advance patient care. Here we describe how to develop a humanized patient-derived xenograft (PDX) model of ovarian cancer that uses orthotopically transplanted patient ovarian tumors with autologous transfer of expanded tumor infiltrating T cells (TILs) as a model that can be utilized to test immunomodulating therapeutics in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krisnawan VE, Stanley JA, Schwarz JK, DeNardo DG (2020) Tumor microenvironment as a regulator of radiation therapy: new insights into stromal-mediated radioresistance. Cancers (Basel) 12(10):2916. https://doi.org/10.3390/cancers12102916

    Article  CAS  Google Scholar 

  2. Hirata E, Sahai E (2017) Tumor microenvironment and differential responses to therapy. Cold Spring Harb Perspect Med 7(7):a026781. https://doi.org/10.1101/cshperspect.a026781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson NM, Simon MC (2020) The tumor microenvironment. Curr Biol 30(16):R921–R925. https://doi.org/10.1016/j.cub.2020.06.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mak IW, Evaniew N, Ghert M (2014) Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 6(2):114–118

    PubMed  PubMed Central  Google Scholar 

  5. Maniati E, Berlato C, Gopinathan G, Heath O, Kotantaki P, Lakhani A, McDermott J, Pegrum C, Delaine-Smith RM, Pearce OMT, Hirani P, Joy JD, Szabova L, Perets R, Sansom OJ, Drapkin R, Bailey P, Balkwill FR (2020) Mouse ovarian cancer models recapitulate the human tumor microenvironment and patient response to treatment. Cell Rep 30(2):525–540.e7. https://doi.org/10.1016/j.celrep.2019.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gitto SB, Powell DJ Jr (2020) Of mice and men: pre-clinical models to identify therapy responsive patient subgroups. Gynecol Pelvic Med 3

    Google Scholar 

  7. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738. https://doi.org/10.4049/jimmunol.172.5.2731

    Article  CAS  PubMed  Google Scholar 

  8. Domcke S, Sinha R, Levine DA, Sander C, Schultz N (2013) Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun 4:2126. https://doi.org/10.1038/ncomms3126

    Article  CAS  PubMed  Google Scholar 

  9. George E, Kim H, Krepler C, Wenz B, Makvandi M, Tanyi JL, Brown E, Zhang R, Brafford P, Jean S, Mach RH, Lu Y, Mills GB, Herlyn M, Morgan M, Zhang X, Soslow R, Drapkin R, Johnson N, Zheng Y, Cotsarelis G, Nathanson KL, Simpkins F (2017) A patient-derived-xenograft platform to study BRCA-deficient ovarian cancers. JCI Insight 2(1):e89760. https://doi.org/10.1172/jci.insight.89760

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lai Y, Wei X, Lin S, Qin L, Cheng L, Li P (2017) Current status and perspectives of patient-derived xenograft models in cancer research. J Hematol Oncol 10(1):106. https://doi.org/10.1186/s13045-017-0470-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu JF, Palakurthi S, Zeng Q, Zhou S, Ivanova E, Huang W, Zervantonakis IK, Selfors LM, Shen Y, Pritchard CC, Zheng M, Adleff V, Papp E, Piao H, Novak M, Fotheringham S, Wulf GM, English J, Kirschmeier PT, Velculescu VE, Paweletz C, Mills GB, Livingston DM, Brugge JS, Matulonis UA, Drapkin R (2017) Establishment of patient-derived tumor xenograft models of epithelial ovarian Cancer for preclinical evaluation of novel therapeutics. Clin Cancer Res 23(5):1263–1273. https://doi.org/10.1158/1078-0432.CCR-16-1237

    Article  CAS  PubMed  Google Scholar 

  12. Owonikoko TK, Zhang G, Kim HS, Stinson RM, Bechara R, Zhang C, Chen Z, Saba NF, Pakkala S, Pillai R, Deng X, Sun SY, Rossi MR, Sica GL, Ramalingam SS, Khuri FR (2016) Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J Transl Med 14(1):111. https://doi.org/10.1186/s12967-016-0861-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim HR, Kang HN, Shim HS, Kim EY, Kim J, Kim DJ, Lee JG, Lee CY, Hong MH, Kim SM, Kim H, Pyo KH, Yun MR, Park HJ, Han JY, Youn HA, Ahn MJ, Paik S, Kim TM, Cho BC (2017) Co-clinical trials demonstrate predictive biomarkers for dovitinib, an FGFR inhibitor, in lung squamous cell carcinoma. Ann Oncol 28(6):1250–1259. https://doi.org/10.1093/annonc/mdx098

    Article  CAS  PubMed  Google Scholar 

  14. De La Rochere P, Guil-Luna S, Decaudin D, Azar G, Sidhu SS, Piaggio E (2018) Humanized mice for the study of immuno-oncology. Trends Immunol 39(9):748–763. https://doi.org/10.1016/j.it.2018.07.001

    Article  CAS  Google Scholar 

  15. King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J, Laning J, Fodor W, Foreman O, Burzenski L, Chase TH, Gott B, Rossini AA, Bortell R, Shultz LD, Greiner DL (2009) Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 157(1):104–118. https://doi.org/10.1111/j.1365-2249.2009.03933.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Drake AC, Chen Q, Chen J (2012) Engineering humanized mice for improved hematopoietic reconstitution. Cell Mol Immunol 9(3):215–224. https://doi.org/10.1038/cmi.2012.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, Ito R, Ito M, Minegishi M, Minegishi N, Tsuchiya S, Sugamura K (2009) The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol 21(7):843–858. https://doi.org/10.1093/intimm/dxp050

    Article  CAS  PubMed  Google Scholar 

  18. Tanaskovic O, Verga Falzacappa MV, Pelicci PG (2019) Human cord blood (hCB)-CD34+ humanized mice fail to reject human acute myeloid leukemia cells. PLoS One 14(9):e0217345. https://doi.org/10.1371/journal.pone.0217345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gitto SB, Kim H, Rafail S, Omran DK, Medvedev S, Kinose Y, Rodriguez-Garcia A, Flowers AJ, Xu H, Schwartz LE, Powell DJ Jr, Simpkins F (2020) An autologous humanized patient-derived-xenograft platform to evaluate immunotherapy in ovarian cancer. Gynecol Oncol 156(1):222–232. https://doi.org/10.1016/j.ygyno.2019.10.011

    Article  CAS  PubMed  Google Scholar 

  20. Kim H, Xu H, George E, Hallberg D, Kumar S, Jagannathan V, Medvedev S, Kinose Y, Devins K, Verma P, Ly K, Wang Y, Greenberg RA, Schwartz L, Johnson N, Scharpf RB, Mills GB, Zhang R, Velculescu VE, Brown EJ, Simpkins F (2020) Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat Commun 11(1):3726. https://doi.org/10.1038/s41467-020-17127-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakayama N, Nakayama K, Shamima Y, Ishikawa M, Katagiri A, Iida K, Miyazaki K (2010) Gene amplification CCNE1 is related to poor survival and potential therapeutic target in ovarian cancer. Cancer 116(11):2621–2634. https://doi.org/10.1002/cncr.24987

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under award number TL1TR001880. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional support was awarded to S.B.G. from the Ovarian Cancer Research Alliance and the Rivkin Center for Ovarian Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Powell Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gitto, S.B., George, E., Medvedev, S., Simpkins, F., Powell, D.J. (2022). Humanized Patient-Derived Xenograft Models of Ovarian Cancer. In: Kreeger, P.K. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 2424. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1956-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1956-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1955-1

  • Online ISBN: 978-1-0716-1956-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics