Skip to main content

Cleavable Self-Aggregating Tags (cSAT) for Therapeutic Peptide Expression and Purification

  • Protocol
  • First Online:
Insoluble Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2406))

Abstract

Efficient protein and peptide expression and purification technologies are highly needed in biotechnology, especially in light of the increasing number of proteins and peptides that are being exploited for therapeutic use, which are inherently difficult to produce via biological means. In this chapter, we describe a facile, reliable, and cost-effective peptide production and purification strategy based on short self-assembling peptides (e.g., L6KD (LLLLLLKD)) and a C-terminal cleavage intein (e.g., Mtu ΔI-CM). This cleavable self-aggregating tag (cSAT) scheme depends on the in vivo formation of aggregates of the fusion protein containing the target peptide, which is induced during the expression by the presence of the self-assembling peptide in the construct. After a simple separation of the aggregates by centrifugation, the purified target peptide with authentic N-terminus is released in solution by pH-induced intein self-cleavage. As an example, a yield of about 4.4 μg/mg wet cell pellet was obtained when the cSAT scheme was used for the expression and purification of the therapeutic peptide GLP-1. This strategy provides a viable approach for preparing peptides with authentic N-termini, especially those in the range of 30 ~ 100 amino acids in size that are typically unstable or susceptible to degradation in Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banga AK (2015) Therapeutic peptides and proteins: formulation, processing, and delivery systems. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36:1136–1145

    Article  CAS  PubMed  Google Scholar 

  3. Vlieghe P, Lisowski V, Martinez J et al (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56

    Article  CAS  PubMed  Google Scholar 

  4. Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707

    Article  CAS  PubMed  Google Scholar 

  5. Isidro-Llobet A, Kenworthy MN, Mukherjee S et al (2019) Sustainability challenges in peptide synthesis and purification: from R&D to production. J Org Chem 84:4615–4628

    Article  CAS  PubMed  Google Scholar 

  6. Wegmueller S, Schmid S (2014) Recombinant peptide production in microbial cells. Curr Org Chem 18:1005–1019

    Article  CAS  Google Scholar 

  7. Mulder KCL, Viana AB, Xavier M et al (2013) Critical aspects to be considered prior to large-scale production of peptides. Curr Protein Pept Sci 14:556–567

    Article  CAS  PubMed  Google Scholar 

  8. Gupta SK, Shukla P (2016) Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol 36:1089–1098

    Article  CAS  PubMed  Google Scholar 

  9. Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80:260–267

    Article  CAS  PubMed  Google Scholar 

  10. Kuddus MR, Yamano M, Rumi F et al (2017) Enhanced expression of cysteine-rich antimicrobial peptide snakin-1 in Escherichia coli using an aggregation-prone protein coexpression system. Biotechnol Prog 33:1520–1528

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi S, Yamamoto E, Mannen T et al (2013) Protein refolding using chemical refolding additives. Biotechnol J 8:17–31

    Article  CAS  PubMed  Google Scholar 

  12. Yamaguchi H, Miyazaki M (2014) Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomol Ther 4:235–251

    Google Scholar 

  13. Lin Z, Zhao Q, Xing L et al (2015) Aggregating tags for column-free protein purification. Biotechnol J 10:1877–1886

    Article  CAS  PubMed  Google Scholar 

  14. Yang X, Pistolozzi M, Lin Z (2018) New trends in aggregating tags for therapeutic protein purification. Biotechnol Lett 40:745–753

    Article  CAS  PubMed  Google Scholar 

  15. Cheng X, Lu W, Zhang S et al (2010) Expression and purification of antimicrobial peptide CM4 by N-pro fusion technology in E. coli. Amino Acids 39:1545–1552

    Article  CAS  PubMed  Google Scholar 

  16. Zhu X, Bi J, Yu J et al (2016) Recombinant expression and characterization of alpha-conotoxin LvIA in Escherichia coli. Mar Drugs 14:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang C-G, Lang M-F, Fu X et al (2020) Application of short hydrophobic elastin-like polypeptides for expression and purification of active proteins. 3. Biotech 10:156

    Google Scholar 

  18. Xing L, Wu W, Zhou B et al (2011) Streamlined protein expression and purification using cleavable self-aggregating tags. Microb Cell Factories 10:42

    Article  CAS  Google Scholar 

  19. Lin Z, Zhou B, Wu W et al (2013) Self-assembling amphipathic alpha-helical peptides induce the formation of active protein aggregates in vivo. Faraday Discuss 166:243–256

    Article  CAS  PubMed  Google Scholar 

  20. Xing L, Xu W, Zhou B et al (2013) Facile expression and purification of the antimicrobial peptide histatin 1 with a cleavable self-aggregating tag (cSAT) in Escherichia coli. Protein Expr Purif 88:248–253

    Article  CAS  PubMed  Google Scholar 

  21. Xu W, Zhao Q, Xing L et al (2016) Recombinant production of influenza hemagglutinin and HIV-1 GP120 antigenic peptides using a cleavable self-aggregating tag. Sci Rep 6:35430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao Q, Xu W, Xing L et al (2016) Recombinant production of medium-to large-sized peptides in Escherichia coli using a cleavable self-aggregating tag. Microb Cell Factories 15:136

    Article  CAS  Google Scholar 

  23. Zhao Q, Zhou B, Gao X et al (2017) A cleavable self-assembling tag strategy for preparing proteins and peptides with an authentic N-terminus. Biotechnol J 12:1600656

    Article  CAS  Google Scholar 

  24. Wu W, Xing L, Zhou B et al (2011) Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microb Cell Factories 10:9

    Article  CAS  Google Scholar 

  25. Zhou B, Xing L, Wu W et al (2012) Small surfactant-like peptides can drive soluble proteins into active aggregates. Microb Cell Factories 11:10

    Article  CAS  Google Scholar 

  26. Lin Z, Xian D, Yang X et al. (2018) α-Helical self-assembling short peptide and its application in protein purification. China Patent 201811557416.8

    Google Scholar 

  27. Wang X, Zhou B, Hu W et al (2015) Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8. Microb Cell Factories 14:88

    Article  CAS  Google Scholar 

  28. Lin Z, Zhao Q, Zhou B et al (2015) Cleavable self-aggregating tags (cSAT) for protein expression and purification. Methods Mol Biol 1258:65–78

    Article  CAS  PubMed  Google Scholar 

  29. Eon-Duval A, Broly H, Gleixner R (2012) Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog 28:608–622

    Article  CAS  PubMed  Google Scholar 

  30. Fong BA, Wu W-Y, Wood DW (2010) The potential role of self-cleaving purification tags in commercial-scale processes. Trends Biotechnol 28:272–279

    Article  CAS  PubMed  Google Scholar 

  31. Banki MR, Feng LA, Wood DW (2005) Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat Methods 2:659–661

    Article  CAS  PubMed  Google Scholar 

  32. Lin Z, Zhao Q, Wang X et al (2020) Engineered pH-inducible intein Mtu ΔI-CM variants with markedly reduced premature cleavage activity. AICHE J 66:e16806

    CAS  Google Scholar 

  33. Walker JM (2002) The bicinchoninic acid (BCA) assay for protein quantitation. In: Walker JM (ed) The protein protocols handbook. Humana Press, Totowa, NJ, pp 11–14

    Chapter  Google Scholar 

  34. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work is supported by grants from Natural Science Foundation of Guangdong province (2017A030311012) and Guangzhou Science and Technology Program key projects (201904020016). We thank Dr. Marco Pistolozzi, School of Biology and Biological Engineering, South China University of Technology, for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Yang or Zhanglin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, X., Lin, Z., Jing, Y. (2022). Cleavable Self-Aggregating Tags (cSAT) for Therapeutic Peptide Expression and Purification. In: Garcia Fruitós, E., Arís Giralt, A. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 2406. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1859-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1859-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1858-5

  • Online ISBN: 978-1-0716-1859-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics