Skip to main content

Sustainable Technological Methods for the Extraction of Phytochemicals from Citrus Byproducts

  • Protocol
  • First Online:
Plant Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2396))

Abstract

Citrus fruits are products of great market values, as used by the juice industry in huge quantities. The juice industry processes millions of tons of citrus fruits per year, but only the pulp is utilized, whereas peels, seeds, and membrane residues are mostly discarded. This generates vast amounts of byproducts (>100 million tons/year), since the peel can make up to 50% of the weight of the fresh fruit. Phytochemical investigations showed that citrus peels are great sources of bioactive compounds, e.g., phenolic compounds, carotenoids, and monoterpenes. These compounds could find numerous applications in the food, cosmetics, and pharmaceutical industries. The recovery of the phytochemicals would provide economic and environmental benefits. Researchers worldwide have developed innovative techniques to recover phytochemicals from the citrus waste, by endorsing the international waste-prevention policies. This chapter reviews the advances in the sector of food technology applied to citrus chemistry and describes the available green techniques that allow the recovery of phytochemicals from citrus byproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medina-Torres N, Espinosa-Andrews H, Trombotto S et al (2019) Ultrasound-assisted extraction optimization of phenolic compounds from Citrus latifolia waste for chitosan bioactive nanoparticles development. Molecules 24:3541. https://doi.org/10.3390/molecules24193541

    Article  CAS  PubMed Central  Google Scholar 

  2. Nipornram S, Tochampa W, Rattanatraiwong P, Singanusong R (2018) Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chem 241:338–345. https://doi.org/10.1016/j.foodchem.2017.08.114

    Article  CAS  PubMed  Google Scholar 

  3. Montero-Calderon A, Cortes C, Zulueta A et al (2019) Green solvents and ultrasound-assisted extraction of bioactive orange (Citrus sinensis) peel compounds. Sci Rep 9:16120. https://doi.org/10.1038/s41598-019-52717-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Hung P, Nhi NHY, Ting LY, Phi NTL (2020) Chemical composition and biological activities of extracts from pomelo Peel by-products under enzyme and ultrasound-assisted extractions. J Chem 2020:1043251. https://doi.org/10.1155/2020/1043251

    Article  CAS  Google Scholar 

  5. Ruviaro AR, de Paula Menezes Barbosa P, Macedo GA (2019) Enzyme-assisted biotransformation increases hesperetin content in citrus juice by-products. Food Res Int 124:213–221. https://doi.org/10.1016/j.foodres.2018.05.004

    Article  CAS  PubMed  Google Scholar 

  6. Li BB, Smith B, Hossain MM (2006) Extraction of phenolics from citrus peels. Sep Purif Technol 48:189–196. https://doi.org/10.1016/j.seppur.2005.07.019

    Article  CAS  Google Scholar 

  7. Chavez-Gonzalez ML, Lopez-Lopez LI, Rodriguez-Herrera R et al (2016) Enzyme-assisted extraction of citrus essential oil. Chem Pap 70:412–417. https://doi.org/10.1515/chempap-2015-0234

    Article  CAS  Google Scholar 

  8. Zacharis CK, Tzanavaras PD (2020) Solid-phase microextraction. Molecules 25:379. https://doi.org/10.3390/molecules25020379

    Article  CAS  PubMed Central  Google Scholar 

  9. Goh RMV, Lau H, Liu SQ et al (2019) Comparative analysis of pomelo volatiles using headspace-solid phase micro-extraction and solvent assisted flavour evaporation. LWT-Food Sci Technol 99:328–345. https://doi.org/10.1016/j.lwt.2018.09.073

    Article  CAS  Google Scholar 

  10. Zhang H, Xie Y, Liu C et al (2017) Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chem 230:316–326. https://doi.org/10.1016/j.foodchem.2017.03.040

    Article  CAS  PubMed  Google Scholar 

  11. Multari S, Carafa I, Barp L et al (2020) Effects of Lactobacillus spp. on the phytochemical composition of juices from two varieties of Citrus sinensis L. Osbeck: “Tarocco” and “Washington navel”. LWT-Food Sci Technol 125:109205. https://doi.org/10.1016/j.lwt.2020.109205

    Article  CAS  Google Scholar 

  12. Chen C, Zhao S, Hao G et al (2017) Role of lactic acid bacteria on the yogurt flavour: a review. Int J Food Prop 20:S316–S330. https://doi.org/10.1080/10942912.2017.1295988

    Article  CAS  Google Scholar 

  13. Kimoto-Nira H, Moriya N, Nogata Y et al (2019) Fermentation of Shiikuwasha (Citrus depressa Hayata) pomace by lactic acid bacteria to generate new functional materials. Int J Food Sci Technol 54:688–695. https://doi.org/10.1111/ijfs.13980

    Article  CAS  Google Scholar 

  14. Valdo Madeira J, Rosas Ferreira L, Alves Macedo J, Alves Macedo G (2015) Efficient tannase production using Brazilian citrus residues and potential application for orange juice valorization. Biocatal Agric Biotechnol 4:91–97. https://doi.org/10.1016/j.bcab.2014.11.005

    Article  Google Scholar 

  15. Ahmed I, Zia MA, Hussain MA et al (2016) Bioprocessing of citrus waste peel for induced pectinase production by aspergillus Niger; its purification and characterization. J Radiat Res Appl Sci 9:148–154. https://doi.org/10.1016/j.jrras.2015.11.003

    Article  CAS  Google Scholar 

  16. Sharma D, Mahajan R (2020) Development of methodology for concurrent maximum production of alkaline xylanase-pectinase enzymes in short submerged fermentation cycle. Waste Biomass Valori 11:6065–6072. https://doi.org/10.1007/s12649-019-00853-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Multari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Multari, S., Mattivi, F., Martens, S. (2022). Sustainable Technological Methods for the Extraction of Phytochemicals from Citrus Byproducts. In: Shulaev, V. (eds) Plant Metabolic Engineering. Methods in Molecular Biology, vol 2396. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1822-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1822-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1821-9

  • Online ISBN: 978-1-0716-1822-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics