Skip to main content

Structural Determination of Uridine Diphosphate Glycosyltransferases Using X-Ray Crystallography

  • Protocol
  • First Online:
Plant Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2396))

Abstract

Uridine diphosphate glycosyltransferases (UGTs) are the key enzymes in glycosylation processes for decorating plant natural products with sugars. Crystallography, one of the powerful techniques for determining protein structures, was used as the main experimental technique and combined with biochemical methods to study the structure–function relationship and molecular mechanisms of UGTs. Crystal structures of plant UGTs have revealed their exquisite architectures and provided the structural basis for understanding their catalytic mechanism and substrate specificity. In this chapter, some protocols and experimental details of all key stages of protein structure determination are provided, and the structural insights on plant UGTs are also highlighted in combination of method description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mackenzie Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JR, Ritter JK, Schachter H, Tephly TR, Tipton KF, Neber PI (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7:255–269

    Article  Google Scholar 

  2. Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326:929–939

    Article  CAS  Google Scholar 

  3. Ross J, Li Y, Lim E, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol 2:3004.1–3004.6

    Article  Google Scholar 

  4. Blundell TL, Johnson LN (1976) Protein crystallography. Academic Press, New York

    Google Scholar 

  5. Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17:3141–3154

    Article  CAS  Google Scholar 

  6. Li L, Modolo LV, Escamilla-Trevino LL, Achnine L, Dixon RA, Wang X (2007) Crystal structure of Medicago truncatula UGT85H2 - insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J Mol Biol 370:951–963

    Article  CAS  Google Scholar 

  7. Modolo LV, Li L, Dixon RA, Wang X (2009) Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids. J Mol Biol 392:1292–1302

    Article  CAS  Google Scholar 

  8. Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford CM, Bowles DJ, Davies GJ (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405

    Article  CAS  Google Scholar 

  9. Brazier-Hicks M, Offen WA, Gershater MC, Revett TJ, Lim EK, Bowles DJ, Davies GJ, Edwards R (2007) Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc Natl Acad Sci U S A 104:20238–20243

    Article  CAS  Google Scholar 

  10. Hiromoto T, Honjo E, Tamada T, Noda N, Kazuma K, Suzuki M, Blaber M, Kuroki R (2015) Structural basis for acceptor-substrate recognition of UDP-glucose: Anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea. Protein Sci 24:395–407

    Article  CAS  Google Scholar 

  11. Doublie S (1997) Preparation of selenomethionyl proteins for phase determination. Methods Enzymol 276:523–530

    Article  CAS  Google Scholar 

  12. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  CAS  Google Scholar 

  13. CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D50:760–763

    Google Scholar 

  14. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  15. French GS, Wilson KS (1978) On the treatment of negative intensity observations. Acta Cryst A34:517–525

    Article  CAS  Google Scholar 

  16. Terwilliger TC, Berendzen J (1999) Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr D55:849–861

    Article  CAS  Google Scholar 

  17. Terwilliger TC (2000) Maximum likelihood density modification. Acta Cryst D56:965–972

    CAS  Google Scholar 

  18. Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Cryst A47:110–119

    Article  CAS  Google Scholar 

  19. Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  Google Scholar 

  20. Lamzin VS, Perrakis A, Wilson KS (2001) The ARP/WARP suite for automated construction and refinement of protein models. In: Rossmann MG, Arnold E (eds) International tables for crystallography - crystallography of biological macromolecules, vol F. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 720–722

    Google Scholar 

  21. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  Google Scholar 

  22. Cowtan KD, Main P (1993) Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr D Biol Crystallogr D49:148–157

    Article  CAS  Google Scholar 

  23. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK - a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  24. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  25. DeLano WL (2002) The PyMOL user’s manual. DeLano Scientific, San Carlos

    Google Scholar 

  26. Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  27. Merritt and Bacon, D.J., E. A. (1997) Raster3D: photorealistic molecular graphics. Methods Enzymol 277:505–524

    Article  Google Scholar 

  28. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alderete, K., Wang, X. (2022). Structural Determination of Uridine Diphosphate Glycosyltransferases Using X-Ray Crystallography. In: Shulaev, V. (eds) Plant Metabolic Engineering. Methods in Molecular Biology, vol 2396. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1822-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1822-6_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1821-9

  • Online ISBN: 978-1-0716-1822-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics