Skip to main content

A Protocol for Prion Discovery in Plants

  • Protocol
  • First Online:
Plant Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2396))

  • 1023 Accesses

Abstract

Recently a likely prion was found in the proteome of Arabidopsis thaliana based on inclusive compositional similarity to known yeast prion-like domains (PrLDs) and gene ontology analysis. A total of 474 proteins in the Arabidopsis thaliana proteome showed significant compositional similarity to known PrLDs in yeast warranting further analysis. In this chapter, we describe the use and limitations of the PLAAC (Prion-Like Amino Acid Composition) software for the identification of prions, specifically as it has recently been applied to identifying the first prion in plants. Our interest in this method, though presented from a plant-based perspective here, is broad and is primarily in using the method for comparative assessment with novel prion identification algorithms currently under development in our lab. This chapter is not meant to serve as a replete description of the architecture and use of HMM in prion prediction in general but is intended to serve as a reference for implementation and interpretation of output from PLAAC and its application to plant proteomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chakrabortee S, Kayatekin C, Newby GA et al (2016) Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc Natl Acad Sci U S A 113:6065–6070

    Article  CAS  Google Scholar 

  2. Lancaster AK, Nutter-Upham A, Lindquist S, King OD (2014) PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30:2501–2502

    Article  CAS  Google Scholar 

  3. Lancaster AK, Nutter-Upham A, Lindquist S, King OD (2014) PLAAC updated PrLD’s. https://github.com/whitehead/PLAAC/blob/master/cli/src/scer_fg_28.fasta

  4. Harbi D, Harrison PM (2014) Classifying prion and prion-like phenomena. Prion 8:161–165

    Article  CAS  Google Scholar 

  5. Meyer RK, McKinley MP, Bowman KA et al (1986) Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci U S A 83:2310–2314

    Article  CAS  Google Scholar 

  6. Bousset L, Melki R (2002) Similar and divergent features in mammalian and yeast prions. Microbes Infect 4:461–469

    Article  CAS  Google Scholar 

  7. Eraña H (2019) Aβ, tau, α-synuclein… are they prions, prion-like proteins, or what? Prion 13(1):41–45

    Article  Google Scholar 

  8. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  CAS  Google Scholar 

  9. McKinley MP, Bolton DC, Prusiner SB (1983) A protease-resistant protein is a structural component of the scrapie prion. Cell 35:57–62

    Article  CAS  Google Scholar 

  10. Wickner RB (1994) (URE3) as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569

    Article  CAS  Google Scholar 

  11. Alberti S, Halfmann R, King O et al (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158

    Article  CAS  Google Scholar 

  12. Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116:313–327

    Article  CAS  Google Scholar 

  13. Toombs JA, Petri M, Paul KR, Kan GY, Ben-Hur A, Ross ED (2012) De novo design of synthetic prion domains. Proc Natl Acad Sci 109:6519–6524

    Article  CAS  Google Scholar 

  14. Chernoff YO (2016) Are there prions in plants? Proc Natl Acad Sci U S A 113:6097–6099

    Article  CAS  Google Scholar 

  15. DiGuardo G (2017) Commentary: a bacterial global regulator forms a prion. Front Microbiol 8:620

    Google Scholar 

  16. Kim HJ, Kim NC, Wang Y-D et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473

    Article  CAS  Google Scholar 

  17. King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462:61–80

    Article  CAS  Google Scholar 

  18. Yuan AH, Hochschild A (2017) A bacterial global regulator forms a prion. Science 355:198–201

    Article  CAS  Google Scholar 

  19. Holmes DL, Lancaster AK, Lindquist S, Halfmann R (2013) Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 153:153–165

    Article  CAS  Google Scholar 

  20. Prilusky J, Felder CE, Zeev-Ben-Mordehai T et al (2005) FoldIndex(C): a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438

    Article  CAS  Google Scholar 

  21. Sabate R, Rousseau F, Schymkowitz J, Ventura S (2015) What makes a protein sequence a prion? PLoS Comput Biol 11:e1004013

    Article  Google Scholar 

  22. Espinosa Angarica V, Ventura S, Sancho J (2013) Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genomics 14:316

    Article  Google Scholar 

  23. MacLea KS, Paul KR, Ben-Musa Z et al (2015) Distinct amino acid compositional requirements for formation and maintenance of the (PSI+) prion in yeast. Mol Cell Biol 35:899–911

    Article  Google Scholar 

  24. Toombs JA, McCarty BR, Ross ED (2010) Compositional determinants of prion formation in yeast. Mol Cell Biol 30:319–332

    Article  CAS  Google Scholar 

  25. Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci U S A 94:9773–9778

    Article  CAS  Google Scholar 

  26. Brown JCS, Lindquist S (2009) A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev 23:2320–2332

    Article  CAS  Google Scholar 

  27. Pallarès I, de Groot NS, Iglesias V et al (2018) Discovering putative prion-like proteins in Plasmodium falciparum: a computational and experimental analysis. Front Microbiol 9:1737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Azad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dixson, J.D., Azad, R.K. (2022). A Protocol for Prion Discovery in Plants. In: Shulaev, V. (eds) Plant Metabolic Engineering. Methods in Molecular Biology, vol 2396. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1822-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1822-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1821-9

  • Online ISBN: 978-1-0716-1822-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics