Skip to main content

Bioinformatics in Lipidomics: Automating Large-Scale LC-MS-Based Untargeted Lipidomics Profiling with SimLipid Software

  • Protocol
  • First Online:
Plant Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2396))

Abstract

Liquid chromatography–mass spectrometry (LC-MS) provides one of the most popular platforms for untargeted plant lipidomics analysis (Shulaev and Chapman, Biochim Biophys Acta 1862(8):786–791, 2017; Rupasinghe and Roessner, Methods Mol Biol 1778:125–135, 2018; Welti et al., Front Biosci 12:2494–506, 2007; Shiva et al., Plant Methods 14:14, 2018). We have developed SimLipid software in order to streamline the analysis of large-volume datasets generated by LC-MS-based untargeted lipidomics methods. SimLipid contains a customizable library of lipid species; graphical user interfaces (GUIs) for visualization of raw data; the identified lipid molecules and their associated mass spectra annotated with fragment ions and parent ions; and detailed information of each identified lipid species all in a single workbench enabling users to rapidly review the results by examining the data for confident identifications of lipid molecular species. In this chapter, we present the functionality of the software and workflow for automating large-scale LC-MS-based untargeted lipidomics profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liebisch G, Ejsing CS, Ekroos K (2015) Identification and annotation of lipid species in metabolomics studies need improvement. Clin Chem 61(12):1542–1544

    Article  CAS  Google Scholar 

  2. Han X (2016) Chapter 5, Bioinformatics in lipidomics. In: Lipidomics: comprehensive mass spectrometry of lipids. Wiley, Hoboken

    Chapter  Google Scholar 

  3. Gray N, Lewis MR, Plumb RS, Wilson ID, Nicholson JK (2015) High-throughput microbore UPLC–MS metabolic phenotyping of urine for large-scale epidemiology studies. J Proteome Res 14(6):2714–2721

    Article  CAS  Google Scholar 

  4. Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, Small SA, Wenk MR, Shui G, Di Paolo G (2012) Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J Biol Chem 287(4):2678–2688

    Article  CAS  Google Scholar 

  5. Kyle JE, Crowell KL, Casey CP, Fujimoto GM, Kim S, Dautel SE, Smith RD, Payne SH, Metz TO (2017) LIQUID: an-open source software for identifying lipids in LC-MS/MS-based lipidomics data. Bioinformatics 33(11):1744–1746

    Article  CAS  Google Scholar 

  6. Koelmel JP, Kroeger NM, Ulmer CZ, Bowden JA, Patterson RE, Cochran JA, Beecher C, Garrett TJ et al (2017) LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics 18(1):331

    Article  Google Scholar 

  7. Ni Z, Angelidou G, Hoffmann R, Fedorova M (2017) LPPtiger software for lipidome-specific prediction and identification of oxidized phospholipids from LC-MS datasets. Sci Rep 7(1):15138

    Article  Google Scholar 

  8. Zhou Z, Shen X, Chen X, Jia T, Xiong X, Zhu Z-J (2019) LipidIMMS analyzer: integrating multi-dimensional information to support lipid identification in ion mobility—mass spectrometry based lipidomics. Bioinformatics 35(4):698–700

    Article  CAS  Google Scholar 

  9. Allen F et al (2014) CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res 42:W94–W99

    Article  CAS  Google Scholar 

  10. Ruttkies C et al (2016) MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminf 8:3

    Article  Google Scholar 

  11. Wang M et al (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34:828–837

    Article  CAS  Google Scholar 

  12. Kind T et al (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10:755–758

    Article  CAS  Google Scholar 

  13. Tsugawa H et al (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526

    Article  CAS  Google Scholar 

  14. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, Spener F, van Meer G, Wakelam MJO, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Supplement):S9–S14

    Article  Google Scholar 

  15. Wang J, Guo X, Xu Y, Barron L, Szoka FC (1998) Synthesis and characterization of long chain alkyl acyl carnitine esters. Potentially biodegradable cationic lipids for use in gene delivery. J Med Chem 41(13):2207–2215

    Article  CAS  Google Scholar 

  16. Liebisch G, Vizcaíno JA, Köfeler H, Trötzmüller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJO (2013) Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res 54:1523–1530

    Article  CAS  Google Scholar 

  17. Murphy RC (2002) Mass spectrometry of phospholipids: tables of molecular and product ions. Illuminati Press, Denver

    Google Scholar 

  18. Cheng C, Gross ML, Pittenauer E (1998) Complete structural elucidation of triacylgylcerolsby tandem sector mass spectrometry. Anal Chem 70:4417–4426

    Article  CAS  Google Scholar 

  19. McAnoy AM, Wu CC, Murphy RC (2005) Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap. J Am Soc Mass Spectrom 16:1498–1509

    Article  CAS  Google Scholar 

  20. Murphy RC, James PF, McAnoy AM, Krank J, Duchoslav E, Barkley RM (2007) Detection of the abundance of diacylglyceroland triacylglycerol molecular species in cells using neutral loss mass spectrometry. Anal Biochem 366:59–70

    Article  CAS  Google Scholar 

  21. Bielawski J, Pierce JS, Snider J, Rembiesa B, Szulc ZM, Bielawska A (2010) Sphingolipid analysis by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). In: Sphingolipids as signaling and regulatory molecules. Springer, New York, NY, pp 46–59

    Chapter  Google Scholar 

  22. Scherer M, Leuthäuser-Jaschinski K, Ecker J, Schmitz G, Liebisch G (2010) A rapid and quantitative LC-MS/MS method to profile sphingolipids. J Lipid Res 51(7):2001–2011

    Article  CAS  Google Scholar 

  23. Honda A, Yamashita K, Miyazaki H, Shirai M, Ikegami T, Xu G, Numazawa M, Hara T, Matsuzaki Y (2008) Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. J Lipid Res 49(9):2063–2073

    Article  CAS  Google Scholar 

  24. Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta 1761(1):121–128

    Article  CAS  Google Scholar 

  25. Iven T, Herrfurth C, Hornung E, Heilmann M, Hofvander P, Stymne S, Zhu L-H, Feussner I (2013) Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry. Plant Methods 9(1):24

    Article  Google Scholar 

  26. Costello CE, Vath JE (1990) Tandem mass spectrometry of glycolipids. Methods Enzymol 193:738–768

    Article  CAS  Google Scholar 

  27. Rajanayake KK, Taylor WR, Isailovic D (2016) The comparison of glycosphingolipids isolated from an epithelial ovarian cancer cell line and a nontumorigenic epithelial ovarian cell line using MALDI-MS and MALDI-MS/MS. Carbohydr Res 431:6–14

    Article  CAS  Google Scholar 

  28. Wang M, Han RH, Han X (2013) Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal Chem 85(19):9312–9320

    Article  CAS  Google Scholar 

  29. Orchard S, Montechi-Palazzi L, Deutsch EW, Binz PA, Jones AR, Paton N, Pizarro A, Creasy DM, Wojcik J, Hermjakob H (2007) Five years of progress in the standardization of proteomics data 4(th) annual spring workshop of the HUPO-proteomics standards initiative April 23–25, 2007 Ecole Nationale Supérieure (ENS), Lyon, France. Proteomics 7(19):3436–3440

    Article  CAS  Google Scholar 

  30. Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22(11):1459–1466

    Article  CAS  Google Scholar 

  31. Lin SM, Zhu L, Winter AQ, Sasinowski M, Kibbe WA (2005) What is mzXML good for? Expert Rev Proteomics 2(6):839–845

    Article  CAS  Google Scholar 

  32. Deutsch EW (2008) mzML: a single, unifying data format for mass spectrometer output. Proteomics 8(14):2776–2777

    Article  CAS  Google Scholar 

  33. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30(10):918

    Article  CAS  Google Scholar 

  34. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11(1):395

    Article  Google Scholar 

  35. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24:381–395

    Article  Google Scholar 

  36. Cleveland WS, Devlin SJ (1988) Locally weighted regression - an approach to regression-analysis by local fitting. J Am Stat Assoc 83(403):596–610

    Article  Google Scholar 

  37. Murphy RC, Gaskell SJ (2011) New applications of mass spectrometry in lipid analysis. J Biol Chem 286(29):25427–25433

    Article  CAS  Google Scholar 

  38. Zhao Y-Y, Cheng X-l, Lin R-C (2014) Lipidomics applications for discovering biomarkers of diseases in clinical chemistry. Int Rev Cell Mol Biol 313:1–26

    Article  CAS  Google Scholar 

  39. Meitei SN (2018) A faster way to quantitatively profile the lipidome. In: Proteomics & metabolomics from technology network. Available via https://www.technologynetworks.com/proteomics/articles/a-faster-way-to-quantitatively-profile-the-lipidome-310604

  40. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494. https://doi.org/10.1093/nar/gky310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rupasinghe T, Roessner U (2018) Extraction of plant lipids for LC-MS-based untargeted plant lipidomics. Methods Mol Biol 1778:125–135. https://doi.org/10.1007/978-1-4939-7819-9_9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Ms. Himani Gupta, Sr. Bioinformatics Analyst, and Dr. Rajesh Pujari, Sr. Bioinformatics Analyst at PREMIER Biosoft for their contribution in performing the data analysis. SimLipid software is a property of PREMIER Biosoft(www.premierbiosoft.com), and the organization has sole ownership of the software IP. The article was written when the corresponding author was an employee of the organization and he is no longer associated with the organization. 

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meitei, N.S., Shulaev, V. (2022). Bioinformatics in Lipidomics: Automating Large-Scale LC-MS-Based Untargeted Lipidomics Profiling with SimLipid Software. In: Shulaev, V. (eds) Plant Metabolic Engineering. Methods in Molecular Biology, vol 2396. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1822-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1822-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1821-9

  • Online ISBN: 978-1-0716-1822-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics