Skip to main content

Implementation of Ion Mobility Spectrometry-Based Separations in Structures for Lossless Ion Manipulations (SLIM)

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2394))

Abstract

Structures for Lossless Ion Manipulations (SLIM) is a powerful variant of traveling wave ion mobility spectrometry (TW-IMS) that uses a serpentine pattern of microelectrodes deposited onto printed circuit boards to achieve ultralong ion path lengths (13.5 m). Ions are propelled through SLIM platforms via arrays of TW electrodes while RF and DC electrodes provide radial confinement, establishing near lossless transmission. The recent ability to cycle ions multiple times through a SLIM has allowed ion path lengths to exceed 1000 m, providing unprecedented separation power and the ability to observe ion structural conformations unobtainable with other IMS technologies. The combination of high separation power, high signal intensity, and the ability to couple with mass spectrometry places SLIM in the unique position of being able to address longstanding proteomics and metabolomics challenges by allowing the characterization of isomeric mixtures containing low abundance analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen MJ, Karasek FW (1970) Plasma chromatography™—a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8(6):330–337

    CAS  Google Scholar 

  2. Karasek FW (1974) Plasma chromatography. Anal Chem 46(8):710A–720A

    CAS  Google Scholar 

  3. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60(20):2299–2301

    CAS  PubMed  Google Scholar 

  4. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2(8):151–153

    CAS  Google Scholar 

  5. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57(3):675–679

    CAS  PubMed  Google Scholar 

  6. Smith RD, Loo JA, Loo RRO, Busman M, Udseth HR (1991) Principles and practice of electrospray ionization—mass spectrometry for large polypeptides and proteins. Mass Spectrom Rev 10(5):359–452

    CAS  Google Scholar 

  7. Wittmer D, Chen YH, Luckenbill BK, Hill HH (1994) Electrospray ionization ion mobility spectrometry. Anal Chem 66(14):2348–2355

    CAS  Google Scholar 

  8. Clemmer DE, Hudgins RR, Jarrold MF (1995) Naked protein conformations: cytochrome c in the gas phase. J Am Chem Soc 117(40):10141–10142

    CAS  Google Scholar 

  9. Lawrence AH, Neudorfl P (1988) Detection of ethylene glycol dinitrate vapors by ion mobility spectrometry using chloride reagent ions. Anal Chem 60(2):104–109

    CAS  Google Scholar 

  10. Hill HH, Siems WF, Louis RHS, McMinn DG (1990) Ion mobility spectrometry. Anal Chem 62(23):1201A–1209A

    CAS  PubMed  Google Scholar 

  11. Eiceman GA, Leasure CS, Vandiver VJ (1986) Negative ion mobility spectrometry for selected inorganic pollutant gases and gas mixtures in air. Anal Chem 58(1):76–80

    CAS  Google Scholar 

  12. Ells B, Barnett DA, Froese K, Purves RW, Hrudey S, Guevremont R (1999) Detection of chlorinated and brominated byproducts of drinking water disinfection using electrospray ionization−high-field asymmetric waveform ion mobility spectrometry−mass spectrometry. Anal Chem 71(20):4747–4752

    CAS  PubMed  Google Scholar 

  13. Eatherton RL, Morrissey MA, Hill HH (1988) Comparison of ion mobility constants of selected drugs after capillary gas chromatography and capillary supercritical fluid chromatography. Anal Chem 60(20):2240–2243

    CAS  PubMed  Google Scholar 

  14. Lawrence AH (1989) Characterization of benzodiazepine drugs by ion mobility spectrometry. Anal Chem 61(4):343–349

    CAS  PubMed  Google Scholar 

  15. Miki A, Keller T, Regenscheit P, Dirnhofer R, Tatsuno M, Katagi M, Nishikawa M, Tsuchihashi H (1997) Application of ion mobility spectrometry to the rapid screening of methamphetamine incorporated in hair. J Chromatogr B Biomed Sci Appl 692(2):319–328

    PubMed  Google Scholar 

  16. Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF (1996) Structural information from ion mobility measurements: effects of the long-range potential. J Phys Chem 100(40):16082–16086

    CAS  Google Scholar 

  17. Shvartsburg AA, Jarrold MF (1996) An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem Phys Lett 261(1):86–91

    CAS  Google Scholar 

  18. Counterman AE, Valentine SJ, Srebalus CA, Henderson SC, Hoaglund CS, Clemmer DE (1998) High-order structure and dissociation of gaseous peptide aggregates that are hidden in mass spectra. J Am Soc Mass Spectrom 9(8):743–759

    CAS  PubMed  Google Scholar 

  19. Thomas J, Bothner B, Traina J, Benner H, Siuzdak G (2004) Electrospray ion mobility spectrometry of intact viruses. J Spectrosc 18:31–36

    CAS  Google Scholar 

  20. Ruotolo BT, Hyung S-J, Robinson PM, Giles K, Bateman RH, Robinson CV (2007) Ion mobility–mass spectrometry reveals long-lived, unfolded intermediates in the dissociation of protein complexes. Angew Chem Int Ed 46(42):8001–8004

    CAS  Google Scholar 

  21. Guevremont R, Siu KWM, Wang J, Ding L (1997) Combined ion mobility/time-of-flight mass spectrometry study of electrospray-generated ions. Anal Chem 69(19):3959–3965

    CAS  PubMed  Google Scholar 

  22. Zucker SM, Lee S, Webber N, Valentine SJ, Reilly JP, Clemmer DE (2011) An ion mobility/ion trap/photodissociation instrument for characterization of ion structure. J Am Soc Mass Spectrom 22(9):1477

    CAS  PubMed  Google Scholar 

  23. Masson A, Kamrath MZ, Perez MAS, Glover MS, Rothlisberger U, Clemmer DE, Rizzo TR (2015) Infrared spectroscopy of mobility-selected H+-Gly-Pro-Gly-Gly (GPGG). J Am Soc Mass Spectrom 26(9):1444–1454

    CAS  PubMed  Google Scholar 

  24. Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley, New York

    Google Scholar 

  25. Struwe WB, Pagel K, Benesch JLP, Harvey DJ, Campbell MP (2016) GlycoMob: an ion mobility-mass spectrometry collision cross section database for glycomics. Glycoconj J 33(3):399–404

    CAS  PubMed  Google Scholar 

  26. Deng L, Webb IK, Garimella SVB, Hamid AM, Zheng X, Norheim RV, Prost SA, Anderson GA, Sandoval JA, Baker ES, Ibrahim YM, Smith RD (2017) Serpentine Ultralong Path with Extended Routing (SUPER) high resolution traveling wave ion mobility-ms using structures for lossless ion manipulations. Anal Chem 89(8):4628–4634

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hines KM, Ross DH, Davidson KL, Bush MF, Xu L (2017) Large-scale structural characterization of drug and drug-like compounds by high-throughput ion mobility-mass spectrometry. Anal Chem 89(17):9023–9030

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Merenbloom SI, Koeniger SL, Valentine SJ, Plasencia MD, Clemmer DE (2006) IMS−IMS and IMS−IMS−IMS/MS for separating peptide and protein fragment ions. Anal Chem 78(8):2802–2809

    CAS  PubMed  Google Scholar 

  29. Kemper PR, Dupuis NF, Bowers MT (2009) A new, higher resolution, ion mobility mass spectrometer. Int J Mass Spectrom 287(1):46–57

    CAS  Google Scholar 

  30. Fernandez-Lima F, Kaplan DA, Suetering J, Park MA (2011) Gas-phase separation using a trapped ion mobility spectrometer. Int J Ion Mobil Spectrom 14(2–3):93–98. https://doi.org/10.1007/s12127-011-0067-8

    Article  Google Scholar 

  31. Silveira JA, Ridgeway ME, Park MA (2014) High resolution trapped ion mobility spectrometery of peptides. Anal Chem 86(12):5624–5627

    CAS  PubMed  Google Scholar 

  32. Kurulugama RT, Nachtigall FM, Lee S, Valentine SJ, Clemmer DE (2009) Overtone mobility spectrometry: part 1. experimental observations. J Am Soc Mass Spectrom 20(5):729–737

    CAS  PubMed  Google Scholar 

  33. Glaskin RS, Valentine SJ, Clemmer DE (2010) A scanning frequency mode for ion cyclotron mobility spectrometry. Anal Chem 82(19):8266–8271

    CAS  PubMed  Google Scholar 

  34. Kaufman SL, Skogen JW, Dorman FD, Zarrin F, Lewis KC (1996) Macromolecule analysis based on electrophoretic mobility in air: globular proteins. Anal Chem 68(11):1895–1904

    CAS  PubMed  Google Scholar 

  35. Rosell-Llompart J, Loscertales IG, Bingham D, Fernández de la Mora J (1996) Sizing nanoparticles and ions with a short differential mobility analyzer. J Aerosol Sci 27(5):695–719

    CAS  Google Scholar 

  36. Loo JA, Berhane B, Kaddis CS, Wooding KM, Xie Y, Kaufman SL, Chernushevich IV (2005) Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex. J Am Soc Mass Spectrom 16(7):998–1008

    CAS  PubMed  Google Scholar 

  37. Purves RW, Guevremont R, Day S, Pipich CW, Matyjaszczyk MS (1998) Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer. Rev Sci Instrum 69(12):4094–4105

    CAS  Google Scholar 

  38. Guevremont R (2004) High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J Chromatogr A 1058(1):3–19

    CAS  PubMed  Google Scholar 

  39. Shvartsburg AA, Tang K, Smith RD (2004) Understanding and designing field asymmetric waveform ion mobility spectrometry separations in gas mixtures. Anal Chem 76(24):7366–7374

    CAS  PubMed  Google Scholar 

  40. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 18(20):2401–2414

    CAS  PubMed  Google Scholar 

  41. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261(1):1–12

    CAS  Google Scholar 

  42. Shvartsburg AA, Smith RD (2008) Fundamentals of traveling wave ion mobility spectrometry. Anal Chem 80(24):9689–9699

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT (2010) Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem 82(22):9557–9565

    CAS  PubMed  Google Scholar 

  44. Campuzano I, Bush MF, Robinson CV, Beaumont C, Richardson K, Kim H, Kim HI (2012) Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections. Anal Chem 84(2):1026–1033

    CAS  PubMed  Google Scholar 

  45. Richardson K, Langridge D, Giles K (2018) Fundamentals of travelling wave ion mobility revisited: I. Smoothly moving waves. Int J Mass Spectrom 428:71–80

    CAS  Google Scholar 

  46. Richardson K, Langridge D, Giles K, Dixit S, Ujma J, Ruotolo B (2019) An improved calibration approach for travelling wave ion mobility spectrometry: robust, high-precision collision cross sections. American Society for Mass Spectrometry

    Google Scholar 

  47. Ibrahim YM, Hamid AM, Deng L, Garimella SVB, Webb IK, Baker ES, Smith RD (2017) New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst 142(7):1010–1021

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Garimella SVB, Ibrahim YM, Webb IK, Tolmachev AV, Zhang X, Prost SA, Anderson GA, Smith RD (2014) Simulation of electric potentials and ion motion in planar electrode structures for lossless ion manipulations (SLIM). J Am Soc Mass Spectrom 25(11):1890–1896

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tolmachev AV, Webb IK, Ibrahim YM, Garimella SVB, Zhang X, Anderson GA, Smith RD (2014) Characterization of ion dynamics in structures for lossless ion manipulations. Anal Chem 86(18):9162–9168

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hamid AM, Ibrahim YM, Garimella SVB, Webb IK, Deng L, Chen T-C, Anderson GA, Prost SA, Norheim RV, Tolmachev AV, Smith RD (2015) Characterization of traveling wave ion mobility separations in structures for lossless ion manipulations. Anal Chem 87(22):11301–11308

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen T-C, Webb IK, Prost SA, Harrer MB, Norheim RV, Tang K, Ibrahim YM, Smith RD (2015) Rectangular ion funnel: a new ion funnel interface for structures for lossless ion manipulations. Anal Chem 87(1):716–722

    CAS  PubMed  Google Scholar 

  52. Zhang X, Garimella SVB, Prost SA, Webb IK, Chen T-C, Tang K, Tolmachev AV, Norheim RV, Baker ES, Anderson GA, Ibrahim YM, Smith RD (2015) Ion trapping, storage, and ejection in structures for lossless ion manipulations. Anal Chem 87(12):6010–6016

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Deng L, Ibrahim YM, Garimella SVB, Webb IK, Hamid AM, Norheim RV, Prost SA, Sandoval JA, Baker ES, Smith RD (2016) Greatly increasing trapped ion populations for mobility separations using traveling waves in structures for lossless ion manipulations. Anal Chem 88(20):10143–10150

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Garimella SVB, Hamid AM, Deng L, Ibrahim YM, Webb IK, Baker ES, Prost SA, Norheim RV, Anderson GA, Smith RD (2016) Squeezing of ion populations and peaks in traveling wave ion mobility separations and structures for lossless ion manipulations using compression ratio ion mobility programming. Anal Chem 88(23):11877–11885

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ibrahim YM, Hamid AM, Cox JT, Garimella SVB, Smith RD (2017) Ion elevators and escalators in multilevel structures for lossless ion manipulations. Anal Chem 89(3):1972–1977

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Attah IK, Garimella SVB, Webb IK, Nagy G, Norheim RV, Schimelfenig CE, Ibrahim YM, Smith RD (2019) Dual polarity ion confinement and mobility separations. J Am Soc Mass Spectrom 30(6):967–976

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Deng L, Ibrahim YM, Baker ES, Aly NA, Hamid AM, Zhang X, Zheng X, Garimella SVB, Webb IK, Prost SA, Sandoval JA, Norheim RV, Anderson GA, Tolmachev AV, Smith RD (2016) Ion mobility separations of isomers based upon long path length structures for lossless ion manipulations combined with mass spectrometry. Chem Select 1(10):2396–2399

    CAS  Google Scholar 

  58. Deng L, Ibrahim YM, Hamid AM, Garimella SVB, Webb IK, Zheng X, Prost SA, Sandoval JA, Norheim RV, Anderson GA, Tolmachev AV, Baker ES, Smith RD (2016) Ultra-high resolution ion mobility separations utilizing traveling waves in a 13 m serpentine path length structures for lossless ion manipulations module. Anal Chem 88(18):8957–8964

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wojcik R, Webb IK, Deng L, Garimella SVB, Prost SA, Ibrahim YM, Baker ES, Smith RD (2017) Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations. Int J Mol Sci 18(1):183

    PubMed Central  Google Scholar 

  60. Zheng X, Deng L, Baker ES, Ibrahim YM, Petyuk VA, Smith RD (2017) Distinguishing d- and l-aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry. Chem Commun 53(56):7913–7916

    CAS  Google Scholar 

  61. Chouinard CD, Nagy G, Webb IK, Garimella SVB, Baker ES, Ibrahim YM, Smith RD (2018) Rapid ion mobility separations of bile acid isomers using cyclodextrin adducts and structures for lossless ion manipulations. Anal Chem 90(18):11086–11091

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chouinard CD, Nagy G, Webb IK, Shi T, Baker ES, Prost SA, Liu T, Ibrahim YM, Smith RD (2018) Improved sensitivity and separations for phosphopeptides using online liquid chromotography coupled with structures for lossless ion manipulations ion mobility–mass spectrometry. Anal Chem 90(18):10889–10896

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagy G, Attah IK, Garimella SVB, Tang K, Ibrahim YM, Baker ES, Smith RD (2018) Unraveling the isomeric heterogeneity of glycans: ion mobility separations in structures for lossless ion manipulations. Chem Commun 54(83):11701–11704

    CAS  Google Scholar 

  64. Nagy G, Chouinard CD, Attah IK, Webb IK, Garimella SVB, Ibrahim YM, Baker ES, Smith RD (2018) Distinguishing enantiomeric amino acids with chiral cyclodextrin adducts and structures for lossless ion manipulations. Electrophoresis 39(24):3148–3155

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Nagy G, Veličković D, Chu RK, Carrell AA, Weston DJ, Ibrahim YM, Anderton CR, Smith RD (2019) Towards resolving the spatial metabolome with unambiguous molecular annotations in complex biological systems by coupling mass spectrometry imaging with structures for lossless ion manipulations. Chem Commun 55(3):306–309

    CAS  Google Scholar 

  66. Nagy G, Kedia K, Attah IK, Garimella SVB, Ibrahim YM, Petyuk VA, Smith RD (2019) Separation of β-amyloid tryptic peptide species with isomerized and racemized l-aspartic residues with ion mobility in structures for lossless ion manipulations. Anal Chem 91(7):4374–4380

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dou M, Chouinard CD, Zhu Y, Nagy G, Liyu AV, Ibrahim YM, Smith RD, Kelly RT (2019) Nanowell-mediated multidimensional separations combining nanoLC with SLIM IM-MS for rapid, high-peak-capacity proteomic analyses. Anal Bioanal Chem 411(21):5363–5372

    CAS  PubMed  Google Scholar 

  68. Webb IK, Garimella SVB, Tolmachev AV, Chen T-C, Zhang X, Norheim RV, Prost SA, LaMarche B, Anderson GA, Ibrahim YM, Smith RD (2014) Experimental evaluation and optimization of structures for lossless ion manipulations for ion mobility spectrometry with time-of-flight mass spectrometry. Anal Chem 86(18):9169–9176

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ibrahim Y, Tang K, Tolmachev AV, Shvartsburg AA, Smith RD (2006) Improving mass spectrometer sensitivity using a high-pressure electrodynamic ion funnel interface. J Am Soc Mass Spectrom 17(9):1299–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Belov ME, Ibrahim YM, Clowers BH, Prior DC, Smith RD (2011) Ion funnel ion trap and process, US 7,888,635

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the National Cancer Institute (R33 CA217699). The work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a DOE national scientific user facility at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle under contract DE-AC05-76RL0 1830 for the DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehia M. Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hollerbach, A.L., Conant, C.R., Nagy, G., Ibrahim, Y.M. (2022). Implementation of Ion Mobility Spectrometry-Based Separations in Structures for Lossless Ion Manipulations (SLIM). In: Rasooly, A., Baker, H., Ossandon, M.R. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2394. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1811-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1811-0_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1810-3

  • Online ISBN: 978-1-0716-1811-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics