Skip to main content
Log in

Gas-phase separation using a trapped ion mobility spectrometer

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

In the present work we describe the principles of operation, versatility and applicability of a trapped ion mobility spectrometer (TIMS) analyzer for fast, gas-phase separation of molecular ions based on their size-to-charge ratio. Mobility-based separation using a TIMS device is shown for a series for isobar pairs. In a TIMS device, mobility resolution depends on the bath gas velocity and analysis scan speed, with the particularity that the mobility separation can be easily tuned from low to high resolution (R > 50) in accordance with the analytical challenge . In contrast to traditional drift tube IMS analyzer, a TIMS device can be easily integrated in a mass spectrometer without a noticeable loss in ion transmission or sensitivity, thus providing a powerful separation platform prior to mass analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (2008) Ion mobility–mass spectrometry. J Mass Spectrom 43:1

    Article  CAS  Google Scholar 

  2. Gillig KJ, Russell DH (2001) In Patent cooperation treaty Int. Appl. WO0165589, The Texas A & M University System, p 36

  3. Gillig KJ, Ruotolo BT, Stone EG, Russell DH (2004) An electrostatic focusing ion guide for ion mobility-mass spectrometry. Int J Mass Spectrom 239:43

    Article  CAS  Google Scholar 

  4. Guo Y, Wang J, Javahery G, Thomson BA, Siu KWM (2004) Ion mobility spectrometer with radial collisional focusing. Anal Chem 77:266

    Article  Google Scholar 

  5. Koeniger SL, Merenbloom SI, Valentine SJ, Jarrold MF, Udseth HR, Smith RD, Clemmer DE (2006) An IMS-IMS analogue of MS-MS. Anal Chem 78:4161

    Article  CAS  Google Scholar 

  6. Kolakowski BM, Mester Z (2007) Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 132:842

    Article  CAS  Google Scholar 

  7. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom Ion Process 261:1

    CAS  Google Scholar 

  8. Kemper PR, Bowers MT (1990) A hybrid double-focusing mass spectrometer–high-pressure drift reaction cell to study thermal energy reactions of mass-selected ions. J Am Soc Mass Spectrom 1:197

    Google Scholar 

  9. Wu C, Siems WF, Asbury GR, Hill HH (1998) Electrospray ionization high-resolution ion mobility spectrometry−mass spectrometry. Anal Chem 70:4929

    Article  CAS  Google Scholar 

  10. Liu Y, Clemmer DE (1997) Characterizing oligosaccharides using injected-ion mobility/mass spectrometry. Anal Chem 69:2504

    Article  CAS  Google Scholar 

  11. Jarrold MF, Constant VA (1991) Silicon cluster ions: evidence for a structural transition. Phys Rev Lett 67:2994

    Article  CAS  Google Scholar 

  12. McLean JA, Ruotolo BT, Gillig KJ, Russell DH (2005) Ion mobility-mass spectrometry: a new paradigm for proteomics. Int J Mass Spectrom 240:301

    Article  CAS  Google Scholar 

  13. Liu X, Valentine SJ, Plasencia MD, Trimpin S, Naylor S, Clemmer DE (2007) Mapping the human plasma proteome by SCX-LC-IMS-MS. J Am Soc Mass Spectrom 18:1249

    Article  CAS  Google Scholar 

  14. Hoaglund CS, Valentine SJ, Clemmer DE (1997) An Ion trap interface for ESI−ion mobility experiments. Anal Chem 69:4156

    Article  CAS  Google Scholar 

  15. Dwivedi P, Wu P, Klopsch S, Puzon G, Xun L, Hill H (2008) Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics 4:63

    Article  CAS  Google Scholar 

  16. Fernandez-Lima FA, Becker C, McKenna AM, Rodgers RP, Marshall AG, Russell DH (2009) Petroleum crude oil characterization by IMS–MS and FTICR MS. Anal Chem 81:9941

    Article  CAS  Google Scholar 

  17. Fernandez-Lima FA, Becker C, Gillig KJ, Russell WK, Tichy SE, Russell DH (2009) Ion mobility-mass spectrometer interface for collisional activation of mobility separated ions. Anal Chem 81:618

    Article  CAS  Google Scholar 

  18. Hoaglund-Hyzer CS, Lee YJ, Counterman AE, Clemmer DE (2002) Coupling ion mobility separations, collisional activation techniques, and multiple stages of MS for analysis of complex peptide mixtures. Anal Chem 74:992

    Article  CAS  Google Scholar 

  19. Fernandez-Lima FA, Becker C, Gillig K, Russell WK, Nascimento MAC, Russell DH (2008) Experimental and theoretical studies of (CsI)nCs+cluster ions produced by 355 nm laser desorption ionization. J Phys Chem A 112:11061

    Article  CAS  Google Scholar 

  20. Fernandez-Lima FA, Wei H, Gao YQ, Russell DH (2009) On the structure elucidation using IMS and molecular dynamics. J Phys Chem A 113:8221

    Article  CAS  Google Scholar 

  21. Fernandez-Lima FA, Blase RC, Russell DH (2010) A study of ion-neutral collision cross-section values for low charge states of peptides, proteins, and peptide/protein complexes. Int J Mass Spectrom Ion Process 298:111

    CAS  Google Scholar 

  22. Dugourd P, Hudgins RR, Clemmer DE, Jarrold MF (1997) High-resolution ion mobility measurements. Rev Sci Instrum 68:1122

    Article  CAS  Google Scholar 

  23. Merenbloom SI, Glaskin RS, Henson ZB, Clemmer DE (2009) High-resolution ion cyclotron mobility spectrometry. Anal Chem 81:1482

    Article  CAS  Google Scholar 

  24. Kemper PR, Dupuis NF, Bowers MT (2009) A new, higher resolution, ion mobility mass spectrometer. Int J Mass Spectrom Ion Process 287:46

    CAS  Google Scholar 

  25. Blase RC, Silveira JA, Gillig KJ, Gamage CM, Russell DH (2011) Increased ion transmission in IMS: a high resolution, periodic-focusing DC ion guide ion mobility spectrometer. Int J Mass Spectrom Ion Process 301:166

    CAS  Google Scholar 

  26. Zeleny J (1898) On the ratio of velocities of the two ions produced in gases by Röngten radiation, and on some related phenomena. Philos Mag 46:120

    Google Scholar 

  27. Park MA (2010) Vol. 7838826, Bruker Daltonics, Inc. (Billerica, MA, US), United States

  28. Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF (1996) Structural information from ion mobility measurements: effects of the long-range potential. J Phys Chem 100:16082

    Article  CAS  Google Scholar 

  29. Shvartsburg AA, Jarrold MF (1996) An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem Phys Lett 261:86

    Article  CAS  Google Scholar 

  30. McDaniel EW, Mason EA (1973) Mobility and diffusion of ions in gases. Wiley, New York

    Google Scholar 

  31. Viehland LA, Mason EA (1975) Gaseous lon mobility in electric fields of arbitrary strength. Ann Phys 91:499

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health (Grant No. 1K99RR030188-01) and a 2010&2011 Bruker Daltonics, Inc. Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Fernandez-Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez-Lima, F., Kaplan, D.A., Suetering, J. et al. Gas-phase separation using a trapped ion mobility spectrometer. Int. J. Ion Mobil. Spec. 14, 93–98 (2011). https://doi.org/10.1007/s12127-011-0067-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-011-0067-8

Keywords

Navigation