Skip to main content

Incorporating, Quantifying, and Leveraging Noncanonical Amino Acids in Yeast

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2394))

Abstract

Genetic code expansion has allowed for extraordinary advances in enhancing protein chemical diversity and functionality, but there remains a critical need for understanding and engineering genetic code expansion systems for improved efficiency. Incorporation of noncanonical amino acids (ncAAs) at stop codons provides a site-specific method for introducing unique chemistry into proteins, though often at reduced yields compared to wild-type proteins. A powerful platform for ncAA incorporation supports both the expression and evaluation of chemically diverse proteins for a broad range of applications. In yeast, ncAAs have been used to study dynamic cellular processes such as protein–protein interactions and also allow for exploration of eukaryotic-specific biology such as epigenetics. Furthermore, yeast display is an advantageous technology for engineering and screening the properties of proteins in high throughput. The protocols presented in this chapter describe detailed methods for the yeast-based genetic encoding of ncAAs in proteins intracellularly or on the yeast surface. In addition, methods are presented for modifying proteins on the yeast surface using bioorthogonal chemical reactions and evaluating reaction efficiency. Finally, protocols are included for the preparation of libraries that involve genetic code expansion. Libraries of proteins that contain ncAAs or libraries of the cellular machinery required to encode ncAAs can be constructed and screened in high throughput for many biological and chemical applications. Efficient incorporation of ncAAs facilitates elucidation of fundamental eukaryotic biology and advances tools for enzyme and genome engineering to evolve host cells that are better able to accommodate alternative genetic codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rezhdo A, Islam M, Huang M, Van Deventer JA (2019) Future prospects for noncanonical amino acids in biological therapeutics. Curr Opin Biotechnol 60:168–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dumas A, Lercher L, Spicer CD, Davis BG (2015) Designing logical codon reassignment—expanding the chemistry in biology. Chem Sci 6:50–69

    Article  CAS  PubMed  Google Scholar 

  3. Italia JS, Zheng Y, Kelemen RE, Erickson SB, Addy PS, Chatterjee A (2017) Expanding the genetic code of mammalian cells. Biochem Soc Trans 45:555–562

    Article  CAS  PubMed  Google Scholar 

  4. Wiltschi B (2016) Incorporation of non-canonical amino acids into proteins in yeast. Fungal Genet Biol 89:137–156

    Article  CAS  PubMed  Google Scholar 

  5. Davis L, Chin JW (2012) Designer proteins: applications of genetic code expansion in cell biology. Nat Rev Mol Cell Biol 13:168–182

    Article  CAS  PubMed  Google Scholar 

  6. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q, Parrish AR, Wang L (2009) Expanding the genetic code for biological studies. Chem Biol 16:323–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cherf GM, Cochran JR (2015) Applications of yeast surface display for protein engineering. Methods Mol Biol 1319:155–175

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rando OJ, Winston F (2012) Chromatin and transcription in yeast. Genetics 190:351–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blount BA, Gowers GF, Ho JCH, Ledesma-Amaro R, Jovicevic D, McKiernan RM, Xie ZX, Li BZ, Yuan YJ, Ellis T (2018) Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat Commun 9:1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen MJ, Wu Y, Yang K, Li Y, Xu H, Zhang H, Li BZ, Li X, Xiao WH, Zhou X, Mitchell LA, Bader JS, Yuan Y, Boeke JD (2018) Heterozygous diploid and interspecies SCRaMbLEing. Nat Commun 9:1934

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wu Y, Zhu RY, Mitchell LA, Ma L, Liu R, Zhao M, Jia B, Xu H, Li YX, Yang ZM, Ma Y, Li X, Liu H, Liu D, Xiao WH, Zhou X, Li BZ, Yuan YJ, Boeke JD (2018) In vitro DNA SCRaMbLE. Nat Commun 9:1935

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu W, Luo Z, Wang Y, Pham NT, Tuck L, Perez-Pi I, Liu L, Shen Y, French C, Auer M, Marles-Wright J, Dai J, Cai Y (2018) Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nat Commun 9:1936

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luo Z, Wang L, Wang Y, Zhang W, Guo Y, Shen Y, Jiang L, Wu Q, Zhang C, Cai Y, Dai J (2018) Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nat Commun 9:1930

    Article  PubMed  PubMed Central  Google Scholar 

  15. Giaever G, Nislow C (2014) The yeast deletion collection: a decade of functional genomics. Genetics 197:451–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont ME, Phizicky EM, Snyder M, Grayhack EJ (2005) Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 19:2816–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ho CH, Magtanong L, Barker SL, Gresham D, Nishimura S, Natarajan P, Koh JLY, Porter J, Gray CA, Andersen RJ, Giaever G, Nislow C, Andrews B, Botstein D, Graham TR, Yoshida M, Boone C (2009) A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat Biotechnol 27:369–377

    Article  CAS  PubMed  Google Scholar 

  18. Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS, Hinshaw JC, Garnier P, Prestwich GD, Leonardson A, Garrett-Engele P, Rush CM, Bard M, Schimmack G, Phillips JW, Roberts CJ, Shoemaker DD (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116:121–137

    Article  CAS  PubMed  Google Scholar 

  19. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen M, Licon K, Otsuka R, Pillus L, Ideker T (2013) Decoupling epigenetic and genetic effects through systematic analysis of gene position. Cell Rep 3:128–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spadiut O, Capone S, Krainer F, Glieder A, Herwig C (2014) Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol 32:54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  PubMed  Google Scholar 

  24. Linciano S, Pluda S, Bacchin A, Angelini A (2019) Molecular evolution of peptides by yeast surface display technology. Medchemcomm 10:1569–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stieglitz JT, Kehoe HP, Lei M, Van Deventer JA (2018) A robust and quantitative reporter system to evaluate noncanonical amino acid incorporation in yeast. ACS Synth Biol 7:2256–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Deventer JA, Le DN, Zhao J, Kehoe HP, Kelly RL (2016) A platform for constructing, evaluating, and screening bioconjugates on the yeast surface. Protein Eng Des Sel 29:485–494

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lim S, Glasgow JE, Filsinger Interrante M, Storm EM, Cochran JR (2017) Dual display of proteins on the yeast cell surface simplifies quantification of binding interactions and enzymatic bioconjugation reactions. Biotechnol J 12:1600696

    Article  Google Scholar 

  28. Niquille DL, Hansen DA, Mori T, Fercher D, Kries H, Hilvert D (2018) Nonribosomal biosynthesis of backbone-modified peptides. Nat Chem 10:282–287

    Article  CAS  PubMed  Google Scholar 

  29. Van Deventer JA, Kelly RL, Rajan S, Wittrup KD, Sidhu SS (2015) A switchable yeast display/secretion system. Protein Eng Des Sel 28:317–325

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755

    Article  CAS  PubMed  Google Scholar 

  31. Van Deventer JA, Wittrup KD (2014) Yeast surface display for antibody isolation: library construction, library screening, and affinity maturation. Methods Mol Biol 1131:151–181

    Article  PubMed  Google Scholar 

  32. Wu N, Deiters A, Cropp TA, King D, Schultz PG (2004) A genetically encoded photocaged amino acid. J Am Chem Soc 126:14306–14307

    Article  CAS  PubMed  Google Scholar 

  33. Angelini A, Chen TF, de Picciotto S, Yang NJ, Tzeng A, Santos MS, Van Deventer JA, Traxlmayr MW, Wittrup KD (2015) Protein engineering and selection using yeast surface display. Methods Mol Biol 1319:3–36

    Article  PubMed  Google Scholar 

  34. Monk JW, Leonard SP, Brown CW, Hammerling MJ, Mortensen C, Gutierrez AE, Shin NY, Watkins E, Mishler DM, Barrick JE (2017) Rapid and inexpensive evaluation of nonstandard amino acid incorporation in Escherichia coli. ACS Synth Biol 6:45–54

    Article  CAS  PubMed  Google Scholar 

  35. Potts KA, Stieglitz JT, Lei M, Van Deventer JA (2020) Reporter system architecture affects measurements of noncanonical amino acid incorporation efficiency and fidelity. Mol Syst Des Eng 5:573–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Amiram M, Haimovich AD, Fan C, Wang YS, Aerni HR, Ntai I, Moonan DW, Ma NJ, Rovner AJ, Hong SH, Kelleher NL, Goodman AL, Jewett MC, Soll D, Rinehart J, Isaacs FJ (2015) Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat Biotechnol 33:1272–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Ptacin JL, Fischer EC, Aerni HR, Caffaro CE, San Jose K, Feldman AW, Turner CR, Romesberg FE (2017) A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551:644–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mohler K, Aerni HR, Gassaway B, Ling J, Ibba M, Rinehart J (2017) MS-READ: quantitative measurement of amino acid incorporation. Biochim Biophys Acta Gen Subj 1861:3081–3088

    Article  CAS  PubMed  Google Scholar 

  39. Hong V, Presolski SI, Ma C, Finn MG (2009) Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem Int Ed Engl 48:9879–9883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hetrick KJ, Walker MC, van der Donk WA (2018) Development and application of yeast and phage display of diverse lanthipeptides. ACS Cent Sci 4:458–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Leeuwen J, Andrews B, Boone C, Tan G (2015) Rapid and efficient plasmid construction by homologous recombination in yeast. Cold Spring Harb Protoc 2015:pdb prot085100

    Article  PubMed  Google Scholar 

  42. Bio-Rad (2019) Gene pulser Xcell™ electroporation system. Bio-Rad. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/4006217A.pdf

  43. Bagwell CB, Adams EG (1993) Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann N Y Acad Sci 677:167–184

    Article  CAS  PubMed  Google Scholar 

  44. Besanceney-Webler C, Jiang H, Zheng T, Feng L, Soriano del Amo D, Wang W, Klivansky LM, Marlow FL, Liu Y, Wu P (2011) Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew Chem Int Ed Engl 50:8051–8056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Uttamapinant C, Tangpeerachaikul A, Grecian S, Clarke S, Singh U, Slade P, Gee KR, Ting AY (2012) Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl 51:5852–5856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang H, Zheng T, Lopez-Aguilar A, Feng L, Kopp F, Marlow FL, Wu P (2014) Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem 25:698–706

    Article  PubMed  PubMed Central  Google Scholar 

  47. Van Deventer JA, Yuet KP, Yoo TH, Tirrell DA (2014) Cell surface display yields evolvable, clickable antibody fragments. Chembiochem 15:1777–1781

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kislukhin AA, Hong VP, Breitenkamp KE, Finn MG (2013) Relative performance of alkynes in copper-catalyzed azide-alkyne cycloaddition. Bioconjug Chem 24:684–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kowalsky CA, Klesmith JR, Stapleton JA, Kelly V, Reichkitzer N, Whitehead TA (2015) High-resolution sequence-function mapping of full-length proteins. PLoS One 10:e0118193

    Article  PubMed  PubMed Central  Google Scholar 

  50. Medina-Cucurella AV, Whitehead TA (2018) Characterizing protein-protein interactions using deep sequencing coupled to yeast surface display. Methods Mol Biol 1764:101–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank our colleagues in the Van Deventer Laboratory for their feedback and insight on these protocols, in particular Rebecca Hershman and Arlinda Rezhdo for their extensive comments. Research that led to the establishment of these protocols was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM133471, the National Cancer Institute of the National Institute of Health under Award R21CA214239, the National Science Foundation under award NSF1815022, the Army Research Office under Award Number W911NF-16-1-0175, a Tufts Collaborates research award, and Tufts startup funds (to J.A.V.). J.T.S. was supported in part by an NSF Graduate Research Fellowship (ID: 2016231237). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the National Science Foundation, the Army Research Office, or Tufts University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Van Deventer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stieglitz, J.T., Van Deventer, J.A. (2022). Incorporating, Quantifying, and Leveraging Noncanonical Amino Acids in Yeast. In: Rasooly, A., Baker, H., Ossandon, M.R. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2394. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1811-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1811-0_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1810-3

  • Online ISBN: 978-1-0716-1811-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics