Skip to main content

Novel Brain-Penetrating Single Chain Antibodies Directed Against 3RTau for the Treatment of Alzheimer’s Disease and Related Dementias

  • Protocol
  • First Online:
Cell Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2383))

Abstract

Alzheimer’s disease (AD), Pick’s disease, fronto-temporal lobar degeneration, cortico-basal degeneration, and primary age related tauopathy are examples of neurodegenerative disorders with tau accumulation and jointly referred as “tauopathies.” The mechanisms through which tau leads to neurodegeneration are not fully understood but include conversion into toxic oligomers and protofibrils, cell-to-cell propagation, post-transcriptional modifications and as a mediator of cell death signals among others. Potential therapeutics includes reducing tau synthesis (e.g., anti-sense); targeting selective tau species and aggregates or blocking cell-to-cell transmission (e.g., antibodies) or by promoting clearance of tau (e.g., autophagy activators). Among them, immunotherapy is currently one of the approaches most actively explored including active, passive, and cellular. A potential problem with immunotherapy has been the trafficking of the antibodies into the CNS. In this chapter, we describe a method for the production and testing of viral vector driven, brain-penetrating, single chain antibodies that specifically recognize 3RTau. These single chain antibodies are modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments recognize tau with potential value for the treatment of AD and related dementias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17:5–21

    Article  PubMed  Google Scholar 

  2. Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672

    Article  CAS  PubMed  Google Scholar 

  3. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  4. Gao Y, Tan L, Yu JT, Tan L (2017) Tau in Alzheimer’s disease: mechanisms and therapeutic strategies. Curr Alzheimer Res 15(3):283–300

    Article  Google Scholar 

  5. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  CAS  PubMed  Google Scholar 

  6. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615

    Article  PubMed  Google Scholar 

  7. Sibener L, Zaganjor I, Snyder HM, Bain LJ, Egge R et al (2014) Alzheimer’s disease prevalence, costs, and prevention for military personnel and veterans. Alzheimers Dement 10:S105–S110

    Article  PubMed  Google Scholar 

  8. Alonso A d C, Iqbal K (2005) Tau-induced neurodegeneration: a clue to its mechanism. J Alzheimers Dis 8:223–226

    Article  CAS  Google Scholar 

  9. Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human tau gene. Biochemistry 31:10626–10633

    Article  CAS  PubMed  Google Scholar 

  10. Caillet-Boudin ML, Buee L, Sergeant N, Lefebvre B (2015) Regulation of human MAPT gene expression. Mol Neurodegener 10:28

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Olney NT, Spina S, Miller BL (2017) Frontotemporal Dementia. Neurol Clin 35:339–374

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arendt T, Stieler JT, Holzer M (2016) Tau and tauopathies. Brain Res Bull 126:238–292

    Article  CAS  PubMed  Google Scholar 

  14. Tacik P, Sanchez-Contreras M, Rademakers R, Dickson DW, Wszolek ZK (2016) Genetic disorders with tau pathology: a review of the literature and report of two patients with Tauopathy and positive family histories. Neurodegener Dis 16:12–21

    Article  CAS  PubMed  Google Scholar 

  15. Dickson DW, Kouri N, Murray ME, Josephs KA (2011) Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci 45:384–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Terry R, Hansen L, Masliah E (1994) Structural basis of the cognitive alterations in Alzheimer disease. In: Terry R, Katzman R (eds) Alzheimer disease. Raven Press, New York, pp 179–196

    Google Scholar 

  17. Overk CR, Masliah E (2014) Pathogenesis of synaptic degeneration in Alzheimer’s disease and Lewy body disease. Biochem Pharmacol 88:508–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2:a006338

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kovacs GG (2015) Invited review: neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol 41:3–23

    Article  CAS  PubMed  Google Scholar 

  21. Takeda N, Kishimoto Y, Yokota O (2012) Pick’s disease. Adv Exp Med Biol 724:300–316

    Article  CAS  PubMed  Google Scholar 

  22. Ward SM, Himmelstein DS, Lancia JK, Binder LI (2012) Tau oligomers and tau toxicity in neurodegenerative disease. Biochem Soc Trans 40:667–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohamed NV, Herrou T, Plouffe V, Piperno N, Leclerc N (2013) Spreading of tau pathology in Alzheimer’s disease by cell-to-cell transmission. Eur J Neurosci 37:1939–1948

    Article  PubMed  Google Scholar 

  24. Gibbons GS, Lee VMY, Trojanowski JQ (2019) Mechanisms of cell-to-cell transmission of pathological tau: a review. JAMA Neurol 76:101–108

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int 58:458–471

    Article  CAS  PubMed  Google Scholar 

  26. Morris M, Knudsen GM, Maeda S, Trinidad JC, Ioanoviciu A et al (2015) Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 18:1183–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 1739:268–279

    Article  CAS  PubMed  Google Scholar 

  28. Pedersen JT, Sigurdsson EM (2015) Tau immunotherapy for Alzheimer’s disease. Trends Mol Med 21:394–402

    Article  CAS  PubMed  Google Scholar 

  29. Valera E, Spencer B, Masliah E (2016) Immunotherapeutic approaches targeting amyloid-beta, alpha-Synuclein, and tau for the treatment of neurodegenerative disorders. Neurotherapeutics 13:179–189

    Article  CAS  PubMed  Google Scholar 

  30. Boado RJ, Lu JZ, Hui EK, Sumbria RK, Pardridge WM (2013) Pharmacokinetics and brain uptake in the rhesus monkey of a fusion protein of arylsulfatase a and a monoclonal antibody against the human insulin receptor. Biotechnol Bioeng 110:1456–1465

    Article  CAS  PubMed  Google Scholar 

  31. Spencer B, Verma I, Desplats P, Morvinski D, Rockenstein E et al (2014) A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis. J Biol Chem 289:17917–17931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian H, Davidowitz E, Lopez P, He P, Schulz P et al (2015) Isolation and characterization of antibody fragments selective for toxic oligomeric tau. Neurobiol Aging 36:1342–1355

    Article  CAS  PubMed  Google Scholar 

  33. Messer A, Butler DC (2020) Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis 134:104619

    Article  CAS  PubMed  Google Scholar 

  34. Spencer B, Bruschweiler S, Sealey-Cardona M, Rockenstein E, Adame A et al (2018) Selective targeting of 3 repeat tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol 136:69–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hussain MM, Strickland DK, Bakillah A (1999) The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 19:141–172

    Article  CAS  PubMed  Google Scholar 

  36. Bickel U, Yoshikawa T, Pardridge WM (2001) Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev 46:247–279

    Article  CAS  PubMed  Google Scholar 

  37. Spencer B, Emadi S, Desplats P, Eleuteri S, Michael S et al (2014) ESCRT-mediated uptake and degradation of brain-targeted alpha-synuclein single chain antibody attenuates neuronal degeneration in vivo. Mol Ther 22:1753–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spencer B, Marr RA, Gindi R, Potkar R, Michael S et al (2011) Peripheral delivery of a CNS targeted, metalo-protease reduces abeta toxicity in a mouse model of Alzheimer’s disease. PLoS One 6:e16575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spencer B, Potkar R, Metcalf J, Thrin I, Adame A et al (2016) Systemic central nervous system (CNS)-targeted delivery of neuropeptide Y (NPY) reduces neurodegeneration and increases neural precursor cell proliferation in a mouse model of Alzheimer disease. J Biol Chem 291:1905–1920

    Article  CAS  PubMed  Google Scholar 

  40. Spencer BJ, Verma IM (2007) Targeted delivery of proteins across the blood-brain barrier. Proc Natl Acad Sci U S A 104:7594–7599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rockenstein E, Overk CR, Ubhi K, Mante M, Patrick C et al (2015) A novel triple repeat mutant tau transgenic model that mimics aspects of Pick’s disease and Fronto-temporal Tauopathies. PLoS One 10:e0121570

    Article  PubMed  PubMed Central  Google Scholar 

  42. Spencer B, Michael S, Shen J, Kosberg K, Rockenstein E et al (2013) Lentivirus mediated delivery of neurosin promotes clearance of wild-type alpha-synuclein and reduces the pathology in an alpha-synuclein model of LBD. Mol Ther 21:31–41

    Article  CAS  PubMed  Google Scholar 

  43. Jones NH, Clabby ML, Dialynas DP, Huang HJ, Herzenberg LA et al (1986) Isolation of complementary DNA clones encoding the human lymphocyte glycoprotein T1/Leu-1. Nature 323:346–349

    Article  CAS  PubMed  Google Scholar 

  44. Masliah E, Spencer B (2015) Applications of ApoB LDLR-binding domain approach for the development of CNS-penetrating peptides for Alzheimer’s disease. Methods Mol Biol 1324:331–337

    Article  PubMed  PubMed Central  Google Scholar 

  45. Masliah E, Spencer B, Rockenstein E (2017) Compositions targeting 3-repeat tau for the treatment of neurodegenerative disorders, and methods for making and using them. WIPO, USA, New York

    Google Scholar 

  46. Spencer B, Desplats PA, Overk CR, Valera-Martin E, Rissman RA et al (2016) Reducing endogenous alpha-Synuclein mitigates the degeneration of selective neuronal populations in an Alzheimer’s disease transgenic mouse model. J Neurosci 36:7971–7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C et al (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M et al (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    Article  CAS  PubMed  Google Scholar 

  49. Nisbet RM, Van der Jeugd A, Leinenga G, Evans HT, Janowicz PW et al (2017) Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain 140:1220–1230

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dupre E, Danis C, Arrial A, Hanoulle X, Homa M et al (2019) Single domain antibody fragments as new tools for the detection of neuronal tau protein in cells and in mice studies. ACS Chem Neurosci 10:3997–4006

    Article  CAS  PubMed  Google Scholar 

  51. Venkataraman L, He P, Schulz P, Sierks MR (2020) Isolation and characterization of antibody fragment selective for human Alzheimer’s disease brain-derived tau variants. Neurobiol Aging 94:7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vitale F, Giliberto L, Ruiz S, Steslow K, Marambaud P et al (2018) Anti-tau conformational scFv MC1 antibody efficiently reduces pathological tau species in adult JNPL3 mice. Acta Neuropathol Commun 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  53. Krishnaswamy S, Huang HW, Marchal IS, Ryoo HD, Sigurdsson EM (2020) Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in drosophila models. Neurobiol Dis 137:104770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Spencer B, Valera E, Rockenstein E, Trejo-Morales M, Adame A et al (2015) A brain-targeted, modified neurosin (kallikrein-6) reduces alpha-synuclein accumulation in a mouse model of multiple system atrophy. Mol Neurodegener 10:48

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by NIH grants AG5131, AG018440, AG051839 to RR. HEK293 antibody production was performed by the VBCF Protein Technologies Facility (www.vbcf.ac.at).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliezer Masliah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Spencer, B., Rissman, R.A., Overk, C., Masliah, E. (2022). Novel Brain-Penetrating Single Chain Antibodies Directed Against 3RTau for the Treatment of Alzheimer’s Disease and Related Dementias. In: Langel, Ü. (eds) Cell Penetrating Peptides. Methods in Molecular Biology, vol 2383. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1752-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1752-6_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1751-9

  • Online ISBN: 978-1-0716-1752-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics