Skip to main content

Fast-Folding Kinetics Using Nanosecond Laser-Induced Temperature-Jump Methods

  • Protocol
  • First Online:
Protein Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2376))

  • 1499 Accesses

Abstract

The development of ultrafast kinetic methods is one of the factors that allowed the research on protein folding to flourish over the last 20 years. The introduction of new optical triggering techniques enabled to experimentally investigate the protein dynamics at the nanosecond to millisecond timescale, allowing researchers to test theoretical predictions and providing experimental benchmarks for computer simulations. In this work, the details of how to perform kinetic experiments by the laser-induced temperature-jump technique, using the two most commonly used probing techniques (namely infrared absorption and fluorescence spectroscopy) are given, with a strong emphasis on the practical details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:167–195

    Article  CAS  Google Scholar 

  2. Cerminara M, Muñoz V (2016) When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches. Biochem J 473:2545–2559

    Article  Google Scholar 

  3. Jones CM, Henry ER, Hu Y, Chan CK, Luck SD, Bhuyan A, Roder H, Hofrichter J, Eaton WA (1993) Fast events in protein folding initiated by nanosecond laser photolysis. Proc Natl Acad Sci U S A 90:11860–11864

    Article  CAS  Google Scholar 

  4. Chen E, Kumita JR, Woolley GA, Kliger DA (2003) The kinetics of helix unfolding of an azobenzene cross-linked peptide probed by nanosecond time-resolved optical rotatory dispersion. J Am Chem Soc 125:12443–12449

    Article  CAS  Google Scholar 

  5. Lu HSM, Volk M, Kholodenko Y, Gooding E, Hochstrasser RM, DeGrado WF (1997) Aminothiotyrosine disulfide, an optical trigger for initiation of protein folding. J Am Chem Soc 119:7173–7180

    Article  CAS  Google Scholar 

  6. Ballew RM, Sabelko J, Reiner C, Gruebele M (1996) A single-sweep, nanosecond time resolution laser temperature-jump apparatus. Rev Sci Instrum 67:3694–3699

    Article  CAS  Google Scholar 

  7. Dyer RB, Gai F, Woodruff WH, Gilmanshin R, Callender RH (1998) Infrared studies of fast events in protein folding. Acc Chem Res 31:709–716

    Article  CAS  Google Scholar 

  8. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv Protein Chem 38:181–364

    Article  CAS  Google Scholar 

  9. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  10. ROsano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172.1–172.17

    Google Scholar 

  11. Hojo H (2014) Recent progress in the chemical synthesis of proteins. Curr Opin Struct Biol 26:26–23

    Article  Google Scholar 

  12. Carlson ED, Gan R, Hodgan CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30(5):1185–1194

    Article  CAS  Google Scholar 

  13. Covington AK, Paabo M, Robinson RA, Bates RG (1968) Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) scale and the operational pH in heavy water. Anal Chem 40:700–706

    Article  CAS  Google Scholar 

  14. Garcia-Mira M, Sanchez-Ruiz JM (2001) pH corrections and protein ionization in water/guanidinium chloride. Biophys J 81:2489–3502

    Article  Google Scholar 

  15. Obermaier C, Gabriel A, Westermeier R (2015) Principles of protein labelling techniques. Methods Mol Biol 1295:153–165

    Article  CAS  Google Scholar 

  16. Lang K, Chin JW (2014) Bioorthogonal reactions for labelling proteins. ACS Chem Biol 9:16–20

    Article  CAS  Google Scholar 

  17. Thompson PA (1997) Laser temperature jump for the study of early events in protein folding. Techn Protein Chem 8:735–743

    Article  Google Scholar 

  18. Henry ER, Hofrichter J (1992) Singular value decomposition – application to analysis of experimental data. Methods Enzymol 210:129–192

    Article  CAS  Google Scholar 

  19. Wai WO, Aida T, Dyer RB (2002) Photoacoustic cavitation and heat transfer effects in the laser-induce temperature jump in water. Appl Phys B Lasers Opt 74:57–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Cerminara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cerminara, M. (2022). Fast-Folding Kinetics Using Nanosecond Laser-Induced Temperature-Jump Methods. In: Muñoz, V. (eds) Protein Folding. Methods in Molecular Biology, vol 2376. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1716-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1716-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1715-1

  • Online ISBN: 978-1-0716-1716-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics