Skip to main content

Purification and Handling of the Chaperonin GroEL

  • Protocol
  • First Online:
Protein Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2376))

  • 1715 Accesses

Abstract

GroEL is an important model molecular chaperone. Despite being extensively studied, several critical aspects of its functionality are still in dispute due partly to difficulties in obtaining protein samples of consistent purity. Here I describe an easy-to-carry-out purification protocol that can reliably produce highly purified and fully functional GroEL protein in large quantities. The method takes advantage of the remarkable stability of the GroEL tetradecamer in 45% acetone which efficiently extracts and removes tightly bound substrate proteins that cannot be separated from GroEL by the usual chromatographic methods. The efficiency of the purification method can be assessed by the amount of residual tryptophan fluorescence associated with the purified GroEL sample. The functionality of the thus obtained GroEL sample is demonstrated by measuring its ATPase turnover both in the presence and absence of the GroEL model substrate protein α-lactalbumin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353:aac4354

    Article  Google Scholar 

  2. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  CAS  Google Scholar 

  3. Horwich AL, Farr GW, Fenton WA (2006) GroEL-GroES-mediated protein folding. Chem Rev 106:1917–1930

    Article  CAS  Google Scholar 

  4. Lin Z, Rye HS (2006) GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol 41:211–239

    Article  CAS  Google Scholar 

  5. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  Google Scholar 

  6. Taguchi H (2015) Reaction cycle of chaperonin GroEL via symmetric “Football” intermediate. J Mol Biol 427:2912–2918

    Article  CAS  Google Scholar 

  7. Todd MJ, Lorimer GH, Thirumalai D (1996) Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism. Proc Natl Acad Sci U S A 93:4030–4035

    Article  CAS  Google Scholar 

  8. Yang D, Ye X, Lorimer GH (2013) Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine. Proc Natl Acad Sci U S A 110:E4298–E4305

    Article  CAS  Google Scholar 

  9. Gruber R, Horovitz A (2016) Allosteric mechanisms in chaperonin machines. Chem Rev 116:6588–6606

    Article  CAS  Google Scholar 

  10. Hayer-Hartl M, Bracher A, Hartl FU (2016) The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci 41:62–76

    Article  CAS  Google Scholar 

  11. Marchenkov VV, Semisotnov GV (2009) GroEL-assisted protein folding: does it occur within the chaperonin inner cavity? Int J Mol Sci 10:2066–2083

    Article  CAS  Google Scholar 

  12. Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83:577–587

    Article  CAS  Google Scholar 

  13. Walti MA, Clore GM (2018) Disassembly/reassembly strategy for the production of highly pure GroEL, a tetradecameric supramolecular machine, suitable for quantitative NMR, EPR and mutational studies. Protein Expr Purif 142:8–15

    Article  CAS  Google Scholar 

  14. Ryabova N, Marchenkov V, Kotova N, Semisotnov G (2014) Chaperonin GroEL reassembly: an effect of protein ligands and solvent composition. Biomol Ther 4:458–473

    Google Scholar 

  15. Voziyan PA, Fisher MT (2000) Chaperonin-assisted folding of glutamine synthetase under nonpermissive conditions: off-pathway aggregation propensity does not determine the co-chaperonin requirement. Protein Sci 9:2405–2412

    Article  CAS  Google Scholar 

  16. Todd MJ, Viitanen PV, Lorimer GH (1993) Hydrolysis of adenosine 5′-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion. Biochemistry 32:8560–8567

    Article  CAS  Google Scholar 

  17. Horovitz A, Willison KR (2005) Allosteric regulation of chaperonins. Curr Opin Struct Biol 15:646–651

    Article  CAS  Google Scholar 

  18. Grason JP, Gresham JS, Widjaja L, Wehri SC, Lorimer GH (2008) Setting the chaperonin timer: the effects of K+ and substrate protein on ATP hydrolysis. Proc Natl Acad Sci U S A 105:17334–17338

    Article  CAS  Google Scholar 

  19. Clark AC, Karon BS, Frieden C (1999) Cooperative effects of potassium, magnesium, and magnesium-ADP on the release of Escherichia coli dihydrofolate reductase from the chaperonin GroEL. Protein Sci 8:2166–2176

    Article  CAS  Google Scholar 

  20. Laughlin LT, Reed GH (1997) The monovalent cation requirement of rabbit muscle pyruvate kinase is eliminated by substitution of lysine for glutamate 117. Arch Biochem Biophys 348:262–267

    Article  CAS  Google Scholar 

  21. Okazaki A, Ikura T, Nikaido K, Kuwajima K (1994) The chaperonin GroEL does not recognize apo-alpha-lactalbumin in the molten globule state. Nat Struct Biol 1:439–446

    Article  CAS  Google Scholar 

  22. Murai N, Taguchi H, Yoshida M (1995) Kinetic analysis of interactions between GroEL and reduced alpha-lactalbumin. Effect of GroES and nucleotides. J Biol Chem 270:19957–19963

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ye, X. (2022). Purification and Handling of the Chaperonin GroEL. In: Muñoz, V. (eds) Protein Folding. Methods in Molecular Biology, vol 2376. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1716-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1716-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1715-1

  • Online ISBN: 978-1-0716-1716-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics