Skip to main content
Log in

Limited Trypsinolysis of GroES: The Effect on the Interaction with GroEL and Assembly In Vitro

  • Structural Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

GroES is a heptameric partner of tetradecameric molecular chaperone GroEL, which ensures the correct folding and assembly of numerous cellular proteins both in vitro and in vivo. This work demonstrates the results of a study of structural aspects of GroES that affect its interaction with GroEL and reassembly. The effect of limited trypsinolysis of GroES on these processes has been studied. It has been shown that limited trypsinolysis of GroES is only strongly pronounced outside the complex with GroEL and results in the cleavage of the peptide bond between Lys20 and Ser21. The N-terminal fragment (~2 kDa) is retained in the GroES particle, which maintains its heptaoligomeric structure but loses the ability to interact with GroEL and dissociates upon a change in the pH from 7 to 8. Trypsin-nicked GroES cannot reassemble after urea-induced unfolding, while the urea-induced unfolding of intact GroES is fully reversible. The reported results indicate the important role of the N-terminal part of GroES subunit in the assembly of its heptameric structure and the interaction with GroEL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellis R.J. 1999. Molecular chaperones: Pathways and networks. Curr. Biol. 9, R137–R139.

    Article  CAS  PubMed  Google Scholar 

  2. Frydman J., Hartl F.U. 1996. Principles of chaperoneassisted protein folding: Differences between in vitro and in vivo mechanisms. Science. 272, 1497–1502.

    Article  CAS  PubMed  Google Scholar 

  3. Martin J., Horwich A.L., Hartl F.U. 1992. Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science. 258, 995–998.

    Article  CAS  PubMed  Google Scholar 

  4. Bergeron J.J., Craig E.A., Horwich A.L., et al. 1997. Molecular chaperones in biology and medicine at Obernai. Cell Stress Chaperones. 2, 220–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roseman A.M., Chen S., White H., et al. 1996. The chaperonin ATPase cycle: Mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell. 87, 241–251.

    Article  CAS  PubMed  Google Scholar 

  6. Yebenes H., Mesa P., Munoz I.G., et al. 2011. Chaperonins: Two rings for folding. Trends Biochem. Sci. }}36}}, 424–432.

    Google Scholar 

  7. Chen S., Roseman A.M., Hunter A.S., et al. 1994. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature. 371, 261–264.

    Article  CAS  PubMed  Google Scholar 

  8. Fenton W. A, Kashi Y., Furtak K., et al. 1994. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 371, 614–619.

    Article  CAS  PubMed  Google Scholar 

  9. Hunt J.F., Weaver A.J., Landry S.J., et al. 1996. The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature. 379, 37–45.

    Article  CAS  PubMed  Google Scholar 

  10. Langer T., Pfeifer G., Martin J., et al. 1992. Chaperoninmediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11, 4757–4765.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu Z., Horwich A.L., Sigler P.B. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature. 388, 741–750.

    Article  CAS  PubMed  Google Scholar 

  12. Marchenkov V.V., Semisotnov G.V. 2009. GroEL-assisted protein folding: Does it occur within the chaperonin inner cavity? Int. J. Mol. Sci. 10, 2066–2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Todd M.J., Viitanen P.V., Lorimer G.H. 1994. Dynamics of the chaperonin ATPase cycle: Implications for facilitated protein folding. Science. 265, 659–666.

    Article  CAS  PubMed  Google Scholar 

  14. Seale J.W., Horowitz P.M. 1995. The C-terminal sequence of the chaperonin GroES is required for oligomerization. J. Biol. Chem. 270, 30268–30270.

    Article  CAS  PubMed  Google Scholar 

  15. Lissin N.M., Venyaminov S.Y., Girshovich A.S. 1990. (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature. 348, 339–342.

    Article  CAS  PubMed  Google Scholar 

  16. Ryabova N., Marchenkov V., Kotova N., Semisotnov G. 2014. Chaperonin GroEL reassembly: an effect of protein ligands and solvent composition. Biomolecules. 4, 458–473.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goldenberg D.P., Creighton T.E. 1984. Gel electrophoresis in studies of protein conformation and folding. Anal. Biochem. 138, 1–18.

    Article  CAS  PubMed  Google Scholar 

  18. Guex N., Peitsch M.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 18, 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  19. Landry S.J., Zeilstra-Ryalls J., Fayet O., et al. 1993. Characterization of a functionally important mobile domain of GroES. Nature. 364, 255–258.

    Article  CAS  PubMed  Google Scholar 

  20. Llorca O., Schneider K., Carrascosa J.L., et al. 1997. Role of the amino terminal domain in GroES oligomerization. Biochim. Biophys. Acta. 1337, 47–56.

    Article  CAS  PubMed  Google Scholar 

  21. Seale J.W., Gorovits B.M., Ybarra J., et al. 1996. Reversible oligomerization and denaturation of the chaperonin GroES. Biochemistry. 35, 4079–4083.

    Article  CAS  PubMed  Google Scholar 

  22. Boudker O., Todd M.J., Freire E. 1997. The structural stability of the co-chaperonin GroES. J. Mol. Biol. 272, 770–779.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Semisotnov.

Additional information

Original Russian Text © V.V. Marchenkov, N.V. Kotova, T.A. Muranova, G.V. Semisotnov, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 1, pp. 82–87.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenkov, V.V., Kotova, N.V., Muranova, T.A. et al. Limited Trypsinolysis of GroES: The Effect on the Interaction with GroEL and Assembly In Vitro. Mol Biol 52, 69–74 (2018). https://doi.org/10.1134/S0026893318010107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318010107

Keywords

Navigation