Skip to main content

Binding Characterization of Cyclic Peptide Ligands to Target Proteins and Chemical Epitopes Using ELISA and Fluorescence Polarization Assays

  • Protocol
  • First Online:
Peptide Macrocycles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2371))

Abstract

Enzyme-linked immunosorbent assay (ELISA) is a plate-based immunological assay designed to detect and quantify peptides, proteins, antibodies, and hormones. Fluorescence polarization (FP) is a solution-phase technique that can be used to determine equilibrium dissociation constant of ligand for the protein of interest. Here we describe the protocols for different ELISAs and for Fluorescence Polarization, and how they can be used to determine relative or absolute binding of macrocyclic peptides to the target proteins. In ELISA, the target protein is used as the antigen, and the binding of antigen is quantified using cyclic peptides and enzyme-linked antibodies. In Fluorescence Polarization assays, a cyclic ligand is fluorescent dye-labeled and titrated with serial concentrations of the non-labeled target protein to determine the equilibrium dissociation constant (KD) of ligand for protein. Detailed descriptions of sample preparation and the ELISA and FP experiments are provided in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kastritis PL, Bonvin AM (2013) On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface 10(79):20120835. https://doi.org/10.1098/rsif.2012.0835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305(5689):1466–1470. https://doi.org/10.1126/science.1099191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Das S, Nag A, Liang J, Bunck DN, Umeda A, Farrow B, Coppock MB, Sarkes DA, Finch AS, Agnew HD, Pitram S, Lai B, Yu MB, Museth AK, Deyle KM, Lepe B, Rodriguez-Rivera FP, McCarthy A, Alvarez-Villalonga B, Chen A, Heath J, Stratis-Cullum DN, Heath JR (2015) A general synthetic approach for designing epitope targeted macrocyclic peptide ligands. Angew Chem Int Ed Engl 54(45):13219–13224. https://doi.org/10.1002/anie.201505243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nag A, Das S, Yu MB, Deyle KM, Millward SW, Heath JR (2013) A chemical epitope-targeting strategy for protein capture agents: the serine 474 epitope of the kinase Akt2. Angew Chem Int Ed Engl 52(52):13975–13979. https://doi.org/10.1002/anie.201305882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moerke NJ (2009) Fluorescence polarization (FP) assays for monitoring peptide-protein or nucleic acid-protein binding. Curr Protoc Chem Biol 1(1):1–15. https://doi.org/10.1002/9780470559277.ch090102

    Article  PubMed  Google Scholar 

  6. Jameson DM (2014) Introduction to fluorescence. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  7. Banks P, Harvey M (2002) Considerations for using fluorescence polarization in the screening of G protein-coupled receptors. J Biomol Screen 7(2):111–117. https://doi.org/10.1177/108705710200700203

    Article  CAS  PubMed  Google Scholar 

  8. Coffin J, Latev M, Bi X, Nikiforov TT (2000) Detection of phosphopeptides by fluorescence polarization in the presence of cationic polyamino acids: application to kinase assays. Anal Biochem 278(2):206–212. https://doi.org/10.1006/abio.1999.4438

    Article  CAS  PubMed  Google Scholar 

  9. Lynch BA, Loiacono KA, Tiong CL, Adams SE, MacNeil IA (1997) A fluorescence polarization based Src-SH2 binding assay. Anal Biochem 247(1):77–82. https://doi.org/10.1006/abio.1997.2042

    Article  CAS  PubMed  Google Scholar 

  10. Rusinova E, Tretyachenko-Ladokhina V, Vele OE, Senear DF, Alexander Ross JB (2002) Alexa and Oregon green dyes as fluorescence anisotropy probes for measuring protein-protein and protein-nucleic acid interactions. Anal Biochem 308(1):18–25. https://doi.org/10.1016/s0003-2697(02)00325-1

    Article  CAS  PubMed  Google Scholar 

  11. Rozema DB, Poulter CD (1999) Yeast protein farnesyltransferase. pKas of peptide substrates bound as zinc thiolates. Biochemistry 38(40):13138–13146. https://doi.org/10.1021/bi990794y

    Article  CAS  PubMed  Google Scholar 

  12. Lynch BA, Minor C, Loiacono KA, van Schravendijk MR, Ram MK, Sundaramoorthi R, Adams SE, Phillips T, Holt D, Rickles RJ, MacNeil IA (1999) Simultaneous assay of Src SH3 and SH2 domain binding using different wavelength fluorescence polarization probes. Anal Biochem 275(1):62–73. https://doi.org/10.1006/abio.1999.4305

    Article  CAS  PubMed  Google Scholar 

  13. Seethala R (2000) Fluorescence polarization competition immunoassay for tyrosine kinases. Methods 22(1):61–70. https://doi.org/10.1006/meth.2000.1037

    Article  CAS  PubMed  Google Scholar 

  14. Singh KK, Rücker T, Hanne A, Parwaresch R, Krupp G (2000) Fluorescence polarization for monitoring ribozyme reactions in real time. BioTechniques 29(2):344–348., 350–341. https://doi.org/10.2144/00292rr02

    Article  CAS  PubMed  Google Scholar 

  15. Lea WA, Simeonov A (2011) Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discov 6(1):17–32. https://doi.org/10.1517/17460441.2011.537322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cesa LC, Patury S, Komiyama T, Ahmad A, Zuiderweg ERP, Gestwicki JE (2013) Inhibitors of difficult protein-protein interactions identified by high-throughput screening of multiprotein complexes. ACS Chem Biol 8(9):1988–1997. https://doi.org/10.1021/cb400356m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rossi AM, Taylor CW (2011) Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc 6(3):365–387. https://doi.org/10.1038/nprot.2011.305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Rosmalen M, Janssen BM, Hendrikse NM, van der Linden AJ, Pieters PA, Wanders D, de Greef TF, Merkx M (2017) Affinity maturation of a cyclic peptide handle for therapeutic antibodies using deep mutational scanning. J Biol Chem 292(4):1477–1489. https://doi.org/10.1074/jbc.M116.764225

    Article  CAS  PubMed  Google Scholar 

  19. Xie X, Sun L, Pessetto ZY, Zhao Y, Zang Z, Zhong L, Wu M, Su Q, Gao X, Zan W, Sun Y (2013) Development of a fluorescence polarization based high-throughput assay to identify Casitas B-lineage lymphoma RING domain regulators. PLoS One 8(10):e78042. https://doi.org/10.1371/journal.pone.0078042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leshchiner ES, Parkhitko A, Bird GH, Luccarelli J, Bellairs JA, Escudero S, Opoku-Nsiah K, Godes M, Perrimon N, Walensky LD (2015) Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc Natl Acad Sci U S A 112(6):1761–1766. https://doi.org/10.1073/pnas.1413185112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Owicki J (2006) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen 5(5):297–306

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by New Faculty Start-up grant by Clark University to A. Nag.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arundhati Nag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Borges, A., Onasenko, I., Nag, A. (2022). Binding Characterization of Cyclic Peptide Ligands to Target Proteins and Chemical Epitopes Using ELISA and Fluorescence Polarization Assays. In: Coppock, M.B., Winton, A.J. (eds) Peptide Macrocycles. Methods in Molecular Biology, vol 2371. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1689-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1689-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1688-8

  • Online ISBN: 978-1-0716-1689-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics