Skip to main content

Phosphoproteomics Profiling of Receptor Kinase Mutants

  • Protocol
  • First Online:
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2358))

  • 938 Accesses

Abstract

The transmembrane receptor kinase family is the largest protein kinase family in Arabidopsis. Many members of this family play critical roles in plant signaling pathways. However, many of these kinases have yet uncharacterized functions and very little is known about the direct substrates of these kinases. We have developed the “ShortPhos” method, an efficient and simple mass spectrometry (MS)-based phosphoproteomics protocol to perform comparative phosphopeptide profiling of knockout mutants of receptor-like kinases. Through this method, we are able to better understand the functional roles of plant kinases in the context of their signaling networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zulawski M, Schulze G, Braginets R et al (2014) The Arabidopsis kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics 15(1):548

    Article  Google Scholar 

  2. Zulawski M, Schulze WX (2015) The plant kinome. Methods Mol Biol 1306:1–23. https://doi.org/10.1007/978-1-4939-2648-0_1

    Article  CAS  PubMed  Google Scholar 

  3. Schweighofer A, Meskiene I (2015) Phosphatases in plants. Methods Mol Biol 1306:25–46. https://doi.org/10.1007/978-1-4939-2648-0_2

    Article  CAS  PubMed  Google Scholar 

  4. Kim J, Choi JN, John KM et al (2012) GC-TOF-MS- and CE-TOF-MS-based metabolic profiling of cheonggukjang (fast-fermented bean paste) during fermentation and its correlation with metabolic pathways. J Agric Food Chem 60(38):9746–9753. https://doi.org/10.1021/jf302833y

    Article  CAS  PubMed  Google Scholar 

  5. Kim TW, Guan S, Sun Y et al (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11(10):1254–1260

    Article  CAS  Google Scholar 

  6. Marshall A, Aalen RB, Audenaert D et al (2012) Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 24(6):2262–2278

    Article  CAS  Google Scholar 

  7. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K et al (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64(2):445–458

    Article  CAS  Google Scholar 

  8. Wang X, Kota U, He K et al (2008) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15(2):220–235. https://doi.org/10.1016/j.devcel.2008.06.011

    Article  CAS  PubMed  Google Scholar 

  9. Wang ZY, Nakano T, Gendron J et al (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2(4):505–513

    Article  CAS  Google Scholar 

  10. Ryu H, Kim K, Cho H et al (2010) Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling. Mol Cells 29(3):291–296. https://doi.org/10.1007/s10059-010-0034-y

    Article  CAS  PubMed  Google Scholar 

  11. Pascual J, Canal MJ, Escandon M et al (2017) Integrated physiological, proteomic, and metabolomic analysis of ultra violet (UV) stress responses and adaptation mechanisms in Pinus radiata. Mol Cell Proteomics 16(3):485–501. https://doi.org/10.1074/mcp.M116.059436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwacke R, Ponce-Soto GY, Krause K et al (2019) MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant 12(6):879–892. https://doi.org/10.1016/j.molp.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  13. Wu XN, Sanchez Rodriguez C, Pertl-Obermeyer H et al (2013) Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 12(10):2856–2873. https://doi.org/10.1074/mcp.M113.029579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niittylä T, Fuglsang AT, Palmgren MG et al (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6(10):1711–1726

    Article  Google Scholar 

  15. Tran HT, Plaxton WC (2008) Proteomic analysis of alterations in the secretome of Arabidopsis thaliana suspension cells subjected to nutritional phosphate deficiency. Proteomics 8. https://doi.org/10.1002/pmic.200800292

  16. Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen starved Arabidopsis seedlings. Plant J 69(6):978–995

    Article  CAS  Google Scholar 

  17. Lan P, Li W, Wen TN et al (2012) Quantitative phosphoproteome profiling of iron-deficient Arabidopsis roots. Plant Physiol 159(1):403–417

    Article  CAS  Google Scholar 

  18. Douglas P, Morrice N, MacKintosh C (1995) Identification of a regulatory phosphorylation site in the hinge 1 region of nitrate reductase from spinach (Spinacea oleracea) leaves. FEBS Lett 377(2):113–117

    Article  CAS  Google Scholar 

  19. Wu X, Sanchez-Rodriguez C, Pertl-Obermeyer H et al (2013) Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 12(10):2856–2873

    Article  CAS  Google Scholar 

  20. Wu X, Sklodowski K, Encke B et al (2014) A kinase-phosphatase signaling module with BSK8 and BSL2 involved in regulation of sucrose-phosphate synthase. J Proteome Res 13(7):3397–3409

    Article  CAS  Google Scholar 

  21. Benschop JJ, Mohammed S, O’Flaherty M et al (2007) Quantitative phospho-proteomics of early elicitor signalling in Arabidopsis. Mol Cell Proteomics 6(7):1705–1713

    Article  Google Scholar 

  22. Reiland S, Finazzi G, Endler A et al (2011) Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF). Proc Natl Acad Sci U S A 108(31):12955–12960

    Article  CAS  Google Scholar 

  23. Reiland S, Messerli G, Baerenfäller K et al (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150(2):889–903

    Article  CAS  Google Scholar 

  24. Chen Y, Höhenwarter W, Weckwerth W (2010) Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and MAPA. Plant J 63(1):1–17

    CAS  PubMed  Google Scholar 

  25. Zhang H, Zhou H, Berke L et al (2013) Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth. Mol Cell Proteomics 12(5):1158–1169

    Article  CAS  Google Scholar 

  26. Durek P, Schmidt R, Heazlewood JL et al (2010) PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38:D828–D834

    Article  CAS  Google Scholar 

  27. Heazlewood JL, Durek P, Hummel J et al (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021

    Article  CAS  Google Scholar 

  28. Duan G, Walther D, Schulze WX (2013) Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana. Front Plant Sci 4:540

    Article  Google Scholar 

  29. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. https://doi.org/10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  30. Morandell S, Grosstessner-Hain K, Roitinger E et al (2010) QIKS-quantitative identification of kinase substrates. Proteomics 10:2015–2025

    Article  CAS  Google Scholar 

  31. Wu XN, Xi L, Pertl-Obermeyer H et al (2017) Highly efficient single-step enrichment of low abundance phosphopeptides from plant membrane preparations. Front Plant Sci 8:1673. https://doi.org/10.3389/fpls.2017.01673

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670

    Article  CAS  Google Scholar 

  33. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  34. Su W, Huber SC, Crawford NM (1996) Identification in vitro of a post-translational regulatory site in the hinge 1 region of Arabidopsis nitrate reductase. Plant Cell 8(3):519–527. https://doi.org/10.1105/tpc.8.3.519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Na Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lu, D., Gao, T., Xi, L., Krall, L., Wu, X.N. (2021). Phosphoproteomics Profiling of Receptor Kinase Mutants. In: Wu, X.N. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 2358. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1625-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1625-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1624-6

  • Online ISBN: 978-1-0716-1625-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics