Skip to main content

The Plant Kinome

  • Protocol
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1306))

Abstract

Plant kinases are one of the largest protein families in Arabidopsis. There are almost 600 membrane-located receptor kinases and almost 400 soluble kinases with distinct functions in signal transduction. In this minireview we discuss phylogeny and functional context of prominent members from major protein kinase subfamilies in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell Mol Life Sci 80:225–236

    CAS  Google Scholar 

  2. Manning G, Whyte DB, Martinez R, Hunter R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1914

    CAS  PubMed  Google Scholar 

  3. Zulawski M, Schulze G, Braginets R, Hartmann S, Schulze WX (2014) The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics 15:548

    PubMed Central  PubMed  Google Scholar 

  4. Champion A, Kreis M, Mockaitis K, Picaud A, Henry Y (2004) Arabidopsis kinome: after the casting. Funct Integr Genomics 4:163–187

    CAS  PubMed  Google Scholar 

  5. Grefen C, Harter K (2004) Plant two-component systems: principles, functions, complexity and cross talk. Planta 219(5):733–742

    CAS  PubMed  Google Scholar 

  6. Lohrmann J, Harter K (2002) Plant two-component signaling systems and the role of response regulators. Plant Physiol 128:363–369

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Lundquist PK, Davis JI, van Wijk KJ (2012) ABC1K atypical kinases in plants: filling the organellar kinase void. Trends Plant Sci 17(9):546–555

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Huang Y, Houston NL, Tovar-Mendez A, Stevenson SE, Miernyk JA, Randall DD, Thelen JJ (2010) A quantitative mass spectrometry-based approach for identifying protein kinase-clients and quantifying kinase activity. Anal Biochem 402(1):69–76

    CAS  PubMed  Google Scholar 

  9. Cock JM, Vanoosthyse V, Gaude T (2002) Receptor kinase signalling in plants and animals: distinct molecular systems with mechanistic similarities. Curr Opin Cell Biol 14:230–236

    CAS  PubMed  Google Scholar 

  10. Podell S, Gribskow M (2004) Predicting N-terminal myristoylation sites in plant proteins. BMC Genomics 5(1):37

    PubMed Central  PubMed  Google Scholar 

  11. Shiu S-H, Bleecker AB (2001) Receptor-like kinases form Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98(19):10763–10768

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Shiu S-H, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 113(re22):1–13

    Google Scholar 

  13. Clouse SD (2011) Brassinosteroids. Arabidopsis Book 9:e0151

    PubMed Central  PubMed  Google Scholar 

  14. Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Sun Y, Burlingam A, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11(10):1254–1260

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Chinchilla D, Boller T, Robatzek S (2007) Flagellin signalling in plant immunity. Adv Exp Med Biol 598:358–371

    PubMed  Google Scholar 

  16. Heese A, Hann DR, Gimenez-Ibanez S, Gajdanowicz P, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen J (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104(29):12217–12222

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    CAS  PubMed  Google Scholar 

  18. Jinn TL, Stone JM, Walker JC (2000) HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14:108–117

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8:735–746

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Caesar K, Elgass K, Chen Z, Huppenberger P, Witthöft J, Schleifenbaum F, Blatt MR, Oecking C, Harter K (2011) A fast brassinolide-regulated response pathway in the plasma membrane of Arabidopsis thaliana. Plant J 66(3):528–540

    CAS  PubMed  Google Scholar 

  21. Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulates plant cell expansion. Science 343:408–411

    CAS  PubMed  Google Scholar 

  22. Wu X, Sanchez-Rodriguez C, Pertl-Obermeyer H, Obermeyer G, Schulze WX (2013) Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 12(10):2856–2873

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Sreeramulu S, Mostizky Y, Sunitha S, Shani E, Nahum H, Salomon D, Ben Hayun L, Gruetter C, Rauh D, Ori N, Sessa G (2013) BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis. Plant J 74:905

    CAS  PubMed  Google Scholar 

  24. Niittylä T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6(10):1711–1726

    PubMed  Google Scholar 

  25. Tanz SK, Castleden I, Hooper CM, Vacher M, Small I, Millar HA (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res 41:D1185–D1191

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Dóczi R, Okrész L, Romero AE, Paccanaro A, Bögre L (2012) Exploring the evolutionary path of plant MAPK networks. Trends Plant Sci 17(9):518–525

    PubMed  Google Scholar 

  27. Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    CAS  PubMed  Google Scholar 

  28. Furuya T, Matsuoka D, Nanmori T (2013) Phosphorylation of Arabidopsis thaliana MEKK1 via Ca signaling as a part of the cold stress response. J Plant Res 26(6):833–840

    Google Scholar 

  29. Hadiarto T, Nanmori T, Matsuoka D, Iwasaki T, Sato K, Fukami Y, Azuma T, Yasuda T (2006) Activation of Arabidopsis MAPK kinase kinase (AtMEKK1) and induction of AtMEKK1-AtMEK1 pathway by wounding. Planta 223(4):708–713

    CAS  PubMed  Google Scholar 

  30. Miao Y, Laun TM, Smykowski A, Zentgraf U (2007) Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol Biol 65(1–2):63–76

    CAS  PubMed  Google Scholar 

  31. Clark KL, Larsen PB, Wang X, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A 95:5401–5406

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33(2):221–233

    CAS  PubMed  Google Scholar 

  33. Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signaling. Nature 451(7180):789–795

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Wingenter K, Trentmann O, Winschuh I, Hörmiller II, Heyer AG, Reinders J, Schulz A, Geiger D, Hedrich R, Neuhaus HE (2011) A member of the mitogen-activated protein 3-kinase family is involved in the regulation of plant vacuolar glucose uptake. Plant J 68:890

    CAS  PubMed  Google Scholar 

  35. Lamberti G, Gugel IL, Meurer J, Soll J, Schwenkert S (2011) The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arabidopsis. Plant Physiol 157:70–85

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Lloyd J, Meinke D (2012) A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis. Plant Physiol 158(3):1115–1129

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Archives of biochemistry and biophysics. Arch Biochem Biophys 452:55–68

    CAS  PubMed  Google Scholar 

  38. Sasabe M, Kosetsu K, Hidaka M, Murase A, Machida Y (2011) Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal Behav 6:743–747

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Sasabe M, Machida Y (2006) MAP65: a bridge linking a MAP kinase to microtubule turnover. Curr Opin Plant Biol 9:563–570

    CAS  PubMed  Google Scholar 

  40. Zulawski M, Braginets R, Schulze WX (2013) PhosPhAt goes kinases – searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res 41(D1):D1176–D1184

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Liese A, Romeis T (2012) Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochim Biophys Acta 1833(7):1582–1589

    PubMed  Google Scholar 

  43. Chandran V, Stollar EJ, Lindorff-Larsen K, Harper JF, Chazin WJ, Dobson CM, Luisi BF, Christodoulou J (2006) Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition. J Mol Biol 357:400–410

    CAS  PubMed  Google Scholar 

  44. Geiger D, Maierhofer T, Al-Rasheid KA, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E, Romeis T, Hedrich R (2011) Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal 4:ra32

    PubMed  Google Scholar 

  45. Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KA, Grill E, Romeis T, Hedrich R (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci U S A 107(17):8023–8028

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci U S A 106(50):21425–21430

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, Bertea C, Zebelo SA, Muroi A, Ishihama N, Yoshioka H, Boland W, Takabayashi J, Endo Y, Sawasaki T, Arimura G (2010) Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol 10:97

    PubMed Central  PubMed  Google Scholar 

  48. Kulma A, Villadsen D, Campbell DG, Meek SE, Harthill JE, Nielsen TH, MacKintosh C (2004) Phosphorylation and 14-3-3 binding of Arabidopsis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Plant J 37:654–667

    CAS  PubMed  Google Scholar 

  49. Latz A, Becker D, Hekman M, Müller T, Beyhl D, Marten I, Eing C, Fischer A, Dunkel M, Bertl A, Rapp UR, Hedrich R (2007) TPK1, a Ca2 + -regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant J 52:449–459

    CAS  PubMed  Google Scholar 

  50. Myers C, Romanowsky SM, Barron YD, Garg S, Azuse CL, Curran A, Davis RM, Hatton J, Harmon AC, Harper JF (2009) Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. Plant J 59:528–539

    CAS  PubMed  Google Scholar 

  51. Lambeck I, Chi JC, Krizowski S, Müller S, Mehlmer N, Teige M, Fischer K, Schwarz G (2010) Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase. Biochemistry 49(37):8177–8186

    CAS  PubMed  Google Scholar 

  52. Giacometti S, Marrano CA, Bonza MC, Luoni L, Limonta M, De Michelis MI (2012) Phosphorylation of serine residues in the N-terminus modulates the activity of ACA8, a plasma membrane Ca2 + -ATPase of Arabidopsis thaliana. J Exp Bot 63:1215–1224

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Matschi S, Werner S, Schulze W, Legen J, Hilger H, Romeis T (2013) Function of calcium-dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development. Plant J 73(6):883–896

    CAS  PubMed  Google Scholar 

  54. Harper JF, Breton G, Harmon A (2004) Decoding Ca(2+) signals through plant protein kinases. Annu Rev Plant Biol 55:263–288

    CAS  PubMed  Google Scholar 

  55. Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    CAS  PubMed  Google Scholar 

  56. Li R-J, Hua W, Lu Y-T (2006) Arabidopsis cytosolic glutamine synthetase AtGLN1;1 is a potential substrate of AtCRK3 involved in leaf senescence. Biochem Biophys Res Commun 324:119–126

    Google Scholar 

  57. Rigo G, Ayaydin F, Tietz O, Zsigmond L, Kovacs H, Pay A, Salchert K, Darula Z, Medzihradszky KF, Szabados L, Palme K, Koncz C, Cseplo A (2013) Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 25(5):1592–1608

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Kim KN, Cheong YH, Gupta R, Luan S (2000) Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol 124:1844–1853

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Nozawa A, Sawada Y, Akiyama T, Koizumi N, Sano H (2003) Variable interactions between sucrose non-fermented 1-related protein kinases and regulatory proteins in higher plants. Biosci Biotechnol Biochem 67:2533–2540

    CAS  PubMed  Google Scholar 

  60. Chen L, Wang QQ, Zhou L, Ren F, Li DD, Li XB (2013) Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol Biol Rep 40(8):4759–4767

    CAS  PubMed  Google Scholar 

  61. Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244

    CAS  PubMed  Google Scholar 

  62. Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL (2013) Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system. J Exp Bot 64(10):2779–2791

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Liu J, Guo Y (2011) The alkaline tolerance in Arabidopsis requires stabilizing microfilament partially through inactivation of PKS5 kinase. J Genet Genomics 38:307–313

    CAS  PubMed  Google Scholar 

  65. Shoji T, Suzuki K, Abe T, Kaneko Y, Shi H, Zhu JK, Rus A, Hasegawa PM, Hashimoto T (2006) Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol 47:1158–1168

    CAS  PubMed  Google Scholar 

  66. Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H + -ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19(5):1617–1634

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Corratge-Faillie C, Offenborn JN, Lacombe B, Dreyer I, Thibaud JB, Kudla J (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res 21:1116–1130

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Li LG, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci U S A 103(33):12625–12630

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Xu J, Li H-D, Chen L-Q, Wang Y, Liu L-L, He L, Wu W-H (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1. Cell 125:1347–1360

    CAS  PubMed  Google Scholar 

  70. Saidi Y, Hearn TJ, Coates JC (2012) Function and evolution of ‘green’ GSK3/Shaggy-like kinases. Trends Plant Sci 17:39–46

    CAS  PubMed  Google Scholar 

  71. Gudesblat GE, Russinova E (2011) Plants grow on brassinosteroids. Curr Opin Plant Biol 14:530–537

    CAS  PubMed  Google Scholar 

  72. Dal Santo S, Stampfl H, Krasensky J, Kempa S, Gibon Y, Petutschnig E, Rozhon W, Heuck A, Clausen T, Jonak C (2012) Stress-Induced GSK3 regulates the redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in Arabidopsis. Plant Cell 24(8):3380–3392

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Khan M, Rozhon W, Bigeard J, Pflieger D, Husar S, Pitzschke A, Teige M, Jonak C, Hirt H, Poppenberger B (2013) Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. J Biol Chem 288:7519–7527

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Bögre L, Ökresz L, Henriques R, Anthony RG (2003) Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci 8(9):424–431

    PubMed  Google Scholar 

  75. Mahfouz MM, Kim S, Delauney AJ, Verma DP (2006) Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18:477–490

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Turck F, Zilbermann F, Kozma SC, Thomas G, Nagy F (2004) Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis. Plant Physiol 134:1527–1535

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Cho HY, Tseng TS, Kaiserli E, Sullivan S, Christie JM, Briggs WR (2007) Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis. Plant Physiol 143:517–529

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E, Briggs WR (1998) Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282:1698–1701

    CAS  PubMed  Google Scholar 

  79. Willige BC, Ahlers S, Zourelidou M, Barbosa IC, Demarsy E, Trevisan M, Davis PA, Roelfsema MR, Hangarter R, Fankhauser C, Schwechheimer C (2013) D6PK AGCVIII Kinases Are Required for Auxin Transport and Phototropic Hypocotyl Bending in Arabidopsis. Plant Cell 25(5):1674–1688

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Zhang Y, He J, McCormick S (2009) Two Arabidopsis AGC kinases are critical for the polarized growth of pollen tubes. Plant J 58:474–484

    CAS  PubMed  Google Scholar 

  81. Dhonukshe P, Huang F, Galvan-Ampudia CS, Mähönen AP, Kleine-Vehn J, Xu J, Quint A, Prasad K, Friml J, Scheres B, Offringa R (2010) Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 137(19):3245–3255

    CAS  PubMed  Google Scholar 

  82. Santner AA, Watson JC (2006) The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J 45:752–764

    CAS  PubMed  Google Scholar 

  83. Anthony RG, Khan S, Costa J, Pais MS, Bogre L (2006) The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1. J Biol Chem 281:37536–37546

    CAS  PubMed  Google Scholar 

  84. Camehl I, Drzewiecki C, Vadassery J, Shahollari B, Sherameti I, Forzani C, Munnik T, Hirt H, Oelmuller R (2011) The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog 7:e1002051

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Howden AJ, Salek M, Miguet L, Pullen M, Thomas B, Knight MR, Sweetlove LJ (2011) The phosphoproteome of Arabidopsis plants lacking the oxidative signal-inducible1 (OXI1) protein kinase. New Phytol 190:49

    CAS  PubMed  Google Scholar 

  86. Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S, Inzé D (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14(4):903–916

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Borowska-Wykret D, Elsner J, De Veylder L, Kwiatkowska D (2012) Defects in leaf epidermis of Arabidopsis thaliana plants with CDKA;1 activity reduced in the shoot apical meristem. Protoplasma 250(4):955–961

    PubMed Central  PubMed  Google Scholar 

  88. Hemerly AS, Ferreira PC, Van Montagu M, Engler G, Inze D (2000) Cell division events are essential for embryo patterning and morphogenesis: studies on dominant-negative cdc2aAt mutants of Arabidopsis. Plant J 23:123–130

    CAS  PubMed  Google Scholar 

  89. Imajuku Y, Ohashi Y, Aoyama T, Goto K, Oka A (2001) An upstream region of the Arabidopsis thaliana CDKA;1 (CDC2aAt) gene directs transcription during trichome development. Plant Mol Biol 46:205–213

    CAS  PubMed  Google Scholar 

  90. Van Leene J, De Jaeger G, Russinova E, De Veylder L (2011) A kaleidoscopic view of the Arabidopsis core cell cycle interactome. Trends Plant Sci 16(3):141–150

    PubMed  Google Scholar 

  91. Cromer L, Heyman J, Touati S, Harashima H, Araou E, Girard C, Horlow C, Wassmann K, Schnittger A, De Veylder L, Mercier R (2012) OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM. PLoS Genet 8(7):e1002865

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Pusch S, Harashima H, Schnittger A (2012) Identification of kinase substrates by bimolecular complementation assays. Plant J 70:348–356

    CAS  PubMed  Google Scholar 

  93. Verkest A, Manes CL, Vercruysse S, Maes S, Van Der Schueren E, Beeckman T, Genschik P, Kuiper M, Inze D, De Veylder L (2005) The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes. Plant Cell 17:1723–1736

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Weimer AK, Nowack MK, Bouyer D, Zhao X, Harashima H, Naseer S, De Winter F, Dissmeyer N, Geldner N, Schnittger A (2012) Retinoblastoma related1 regulates asymmetric cell divisions in Arabidopsis. Plant Cell 24:4083–4095

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Zhao X, Harashima H, Dissmeyer N, Pusch S, Weimer AK, Bramsiepe J, Bouyer D, Rademacher S, Nowack MK, Novak B, Sprunck S, Schnittger A (2012) A general G1/S-phase cell-cycle control module in the flowering plant Arabidopsis thaliana. PLoS Genet 8:e1002847

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Barroco RM, De Veylder L, Magyar Z, Engler G, Inze D, Mironov V (2003) Novel complexes of cyclin-dependent kinases and a cyclin-like protein from Arabidopsis thaliana with a function unrelated to cell division. Cell Mol Life Sci 60:401–412

    CAS  PubMed  Google Scholar 

  97. Cui H, Wang Y, Xue L, Chu J, Yan C, Fu J, Chen M, Innes RW, Zhou JM (2010) Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4. Cell Host Microbe 7:164–175

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Kitsios G, Alexiou KG, Bush M, Shaw P, Doonan JH (2008) A cyclin-dependent protein kinase, CDKC2, colocalizes with and modulates the distribution of spliceosomal components in Arabidopsis. Plant J 54:220–235

    CAS  PubMed  Google Scholar 

  99. Hajheidari M, Farrona S, Huettel B, Koncz Z, Koncz C (2012) CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. Plant Cell 24:1626–1642

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Metraux JP, Mauch-Mani B (2005) Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987–999

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Ben-Nissan G, Cui W, Kim DJ, Yan Y, Yoo BC, Lee JY (2008) Arabidopsis casein kinase 1-like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules. Plant Physiol 148(4):1897–1907

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Lee JY, Taoka K, Yoo BC, Ben-Nissan G, Kim DJ, Lucas WJ (2005) Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins. Plant Cell 17(10):2817–2831

    PubMed Central  CAS  PubMed  Google Scholar 

  104. O’Regan L, Blot J, Fry AM (2007) Mitotic regulation by NIMA-related kinases. Cell Div 2:25

    PubMed Central  PubMed  Google Scholar 

  105. Vigneault F, Lachance D, Cloutier M, Pelletier G, Levasseur C, Seguin A (2007) Members of the plant NIMA-related kinases are involved in organ development and vascularization in poplar, Arabidopsis and rice. Plant J 51:575–588

    CAS  PubMed  Google Scholar 

  106. Sakai T, Honing H, Nishioka M, Uehara Y, Takahashi M, Fujisawa N, Saji K, Seki M, Shinozaki K, Jones MA, Smirnoff N, Okada K, Wasteneys GO (2008) Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. Plant J 53:157–171

    CAS  PubMed  Google Scholar 

  107. Zhang B, Chen HW, Mu RL, Zhang WK, Zhao MY, Wei W, Wang F, Yu H, Lei G, Zou HF, Ma B, Chen SY, Zhang JS (2011) NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis. Plant J 68:830–843

    CAS  PubMed  Google Scholar 

  108. Motose H, Hamada T, Yoshimoto K, Murata T, Hasebe M, Watanabe Y, Hashimoto T, Sakai T, Takahashi T (2011) NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana. Plant J 67:993–1005

    CAS  PubMed  Google Scholar 

  109. Motose H, Takatani S, Ikeda T, Takahashi T (2012) NIMA-related kinases regulate directional cell growth and organ development through microtubule function in Arabidopsis thaliana. Plant Signal Behav 7(12):1552–1555

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Motose H, Tominaga R, Wada T, Sugiyama M, Watanabe Y (2008) A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules. Plant J 54:829–844

    CAS  PubMed  Google Scholar 

  111. Demidov D, Hesse S, Tewes A, Rutten T, Fuchs J, Ashtiyani RK, Lein S, Fischer A, Reuter G, Houben A (2009) Aurora1 phosphorylation activity on histone H3 and its cross-talk with other post-translational histone modifications in Arabidopsis. Plant J 59:221–230

    CAS  PubMed  Google Scholar 

  112. Kawabe A, Matsunaga S, Nakagawa K, Kurihara D, Yoneda A, Hasezawa S, Uchiyama S, Fukui K (2005) Characterization of plant Aurora kinases during mitosis. Plant Mol Biol 58:1–13

    CAS  PubMed  Google Scholar 

  113. Kurihara D, Matsunaga S, Kawabe A, Fujimoto S, Noda M, Uchiyama S, Fukui K (2006) Aurora kinase is required for chromosome segregation in tobacco BY-2 cells. Plant J 48:572–580

    CAS  PubMed  Google Scholar 

  114. Van Damme D, De Rybel B, Gudesblat G, Demidov D, Grunewald W, De Smet I, Houben A, Beeckman T, Russinova E (2011) Arabidopsis alpha Aurora kinases function in formative cell division plane orientation. Plant J 23:4013–4024

    Google Scholar 

  115. Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH (2000) WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 275:16795–16801

    CAS  PubMed  Google Scholar 

  116. Murakami-Kojima M, Nakamichi N, Yamashino T, Mizuno T (2002) The APRR3 component of the clock-associated APRR1/TOC1 quintet is phosphorylated by a novel protein kinase belonging to the WNK family, the gene for which is also transcribed rhythmically in Arabidopsis thaliana. Plant Cell Physiol 43:675–683

    CAS  PubMed  Google Scholar 

  117. Wang Y, Liu K, Liao H, Zhuang C, Ma H, Yan X (2008) The plant WNK gene family and regulation of flowering time in Arabidopsis. Plant Biol (Stuttg) 10(5):548–562

    CAS  Google Scholar 

  118. Hong-Hermesdorf A, Brux A, Gruber A, Gruber G, Schumacher K (2006) A WNK kinase binds and phosphorylates V-ATPase subunit C. FEBS Lett 580:932–939

    CAS  PubMed  Google Scholar 

  119. Zhang B, Liu K, Zheng Y, Wang Y, Wang J, Liao H (2013) Disruption of AtWNK8 enhances tolerance of Arabidopsis to salt and osmotic stresses via modulating proline content and activities of catalase and peroxidase. Int J Mol Sci 14:7032–7047

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Moreno-Romero J, Armengot L, Marques-Bueno MM, Cadavid-Ordonez M, Martinez MC (2011) About the role of CK2 in plant signal transduction. Molecular and cellular biochemistry. Mol Cell Biochem 356:233–240

    CAS  PubMed  Google Scholar 

  121. Dennis MD, Browning KS (2009) Differential phosphorylation of plant translation initiation factors by Arabidopsis thaliana CK2 holoenzymes. J Biol Chem 284:20602–20614

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Lu SX, Liu H, Knowles SM, Li J, Ma L, Tobin EM, Lin C (2011) A role for protein kinase casein kinase2 alpha-subunits in the Arabidopsis circadian clock. Plant Physiol 157:1537–1545

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Mulekar JJ, Huq E (2012) Does CK2 affect flowering time by modulating the autonomous pathway in Arabidopsis? Plant Signal Behav 7:292–294

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Daniel X, Sugano S, Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci U S A 101:3292–3297

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Sugano S, Andronis C, Green RM, Wang ZY, Tobin EM (1998) Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc Natl Acad Sci U S A 95:11020–11025

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Bu Q, Zhu L, Dennis MD, Yu L, Lu SX, Person MD, Tobin EM, Browning KS, Huq E (2011) Phosphorylation by CK2 enhances the rapid light-induced degradation of phytochrome interacting factor 1 in Arabidopsis. J Biol Chem 286:12066–12074

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Hardtke CS, Gohda K, Osterlund MT, Oyama T, Okada K, Deng XW (2000) HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBO J 19:4997–5006

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Marques-Bueno MM, Moreno-Romero J, Abas L, De Michele R, Martinez MC (2011) A dominant negative mutant of protein kinase CK2 exhibits altered auxin responses in Arabidopsis. Plant J 67:169–180

    CAS  PubMed  Google Scholar 

  129. Fragoso S, Espíndola L, Páez-Valencia J, Gamboa A, Camacho Y, Martínez-Barajas E, Coello P (2009) SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation. Plant Physiol 149(4):1906–1916

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Halford NG, Hey SJ (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 419(2):247–259

    CAS  PubMed  Google Scholar 

  131. Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M (2009) SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J 59:316–328

    CAS  PubMed  Google Scholar 

  132. Li XF, Li YJ, An YH, Xiong LJ, Shao XH, Wang Y, Sun Y (2009) AKINbeta1 is involved in the regulation of nitrogen metabolism and sugar signaling in Arabidopsis. J Integr Plant Biol 51(5):513–520

    CAS  PubMed  Google Scholar 

  133. Tsai AY, Gazzarrini S (2012) AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. Plant J 69:809–821

    CAS  PubMed  Google Scholar 

  134. Tsai AY, Gazzarrini S (2012) Overlapping and distinct roles of AKIN10 and FUSCA3 in ABA and sugar signaling during seed germination. Plant Signal Behav 7:1238–1242

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RA, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149:1860–1871

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Hey S, Mayerhofer H, Halford NG, Dickinson JR (2007) DNA sequences from Arabidopsis, which encode protein kinases and function as upstream regulators of Snf1 in yeast. J Biol Chem 282:10472–10479

    CAS  PubMed  Google Scholar 

  137. Shen W, Reyes MI, Hanley-Bowdoin L (2009) Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiol 150:996–1005

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Delatte TL, Sedijani P, Kondou Y, Matsui M, de Jong GJ, Somsen GW, Wiese-Klinkenberg A, Primavesi LF, Paul MJ, Schluepmann H (2011) Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. Plant Physiol 157:160–174

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Harthill JE, Meek SE, Morrice N, Peggie MW, Borch J, Wong BH, Mackintosh C (2006) Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J 47:211–223

    CAS  PubMed  Google Scholar 

  140. Glinski M, Weckwerth W (2005) Differential multisite phosphorylation of the trehalose-6-phosphate synthase gene family in Arabidopsis thaliana: a mass spectrometry-based process for multiparallel peptide library phosphorylation analysis. Mol Cell Proteomics 4(10):1614–1625

    CAS  PubMed  Google Scholar 

  141. Kulik A, Anielska-Mazur A, Bucholc M, Koen E, Szymanska K, Zmienko A, Krzywinska E, Wawer I, McLoughlin F, Ruszkowski D, Figlerowicz M, Testerink C, Slodowska A, Wendehenne D, Dobrowolska G (2012) SNF1-Related Protein Kinases Type 2 are involved in plant responses to cadmium stress. Plant Physiol 160:868–883

    PubMed Central  CAS  PubMed  Google Scholar 

  142. McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, Lauriere C, Munnik T, Haring MA, Testerink C (2012) The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J 72(3):436–449

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    CAS  PubMed  Google Scholar 

  144. Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y (2013) The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot 64:675–684

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Acharya BR, Jeon BW, Zhang W, Assmann SM (2013) Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol 200(4):1049–1063

    CAS  PubMed  Google Scholar 

  146. Fujii H, Verslues PE, Zhu JK (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci U S A 108(4):1717–1722

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5(11):e13935

    PubMed Central  PubMed  Google Scholar 

  148. Shin R, Alvarez S, Burch AY, Jez JM, Schachtman DP (2007) Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci U S A 104(15):6460–6465

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Ingelsson B, Vener AV (2012) Phosphoproteomics of Arabidopsis chloroplasts reveals involvement of the STN7 kinase in phosphorylation of nucleoid protein pTAC16. FEBS Lett 586:1265–1271

    CAS  PubMed  Google Scholar 

  150. Tikkanen M, Suorsa M, Gollan PJ, Aro EM (2012) Post-genomic insight into thylakoid membrane lateral heterogeneity and redox balance. FEBS Lett 586:2911–2916

    CAS  PubMed  Google Scholar 

  151. Vainonen JP, Hansson M, Vener AV (2005) STN8 protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins. J Biol Chem 280:33679–33686

    CAS  PubMed  Google Scholar 

  152. Lageix S, Lanet E, Pouch-Pelissier MN, Espagnol MC, Robaglia C, Deragon JM, Pelissier T (2008) Arabidopsis eIF2alpha kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biol 8:134

    PubMed Central  PubMed  Google Scholar 

  153. Zhang Y, Dickinson JR, Paul MJ, Halford NG (2003) Molecular cloning of an Arabidopsis homologue of GCN2, a protein kinase involved in co-ordinated response to amino acid starvation. Planta 217:668–675

    CAS  PubMed  Google Scholar 

  154. Zhang Y, Wang Y, Kanyuka K, Parry MA, Powers SJ, Halford NG (2008) GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2alpha in Arabidopsis. J Exp Bot 59:3131–3141

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Golovkin M, Reddy AS (1999) An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70 K protein. J Biol Chem 274:36428–36438

    CAS  PubMed  Google Scholar 

  156. Krupnova T, Sasabe M, Ghebreghiorghis L, Gruber CW, Hamada T, Dehmel V, Strompen G, Stierhof YD, Lukowitz W, Kemmerling B, Machida Y, Hashimoto T, Mayer U, Jürgens G (2009) Microtubule-associated kinase-like protein RUNKEL needed [corrected] for cell plate expansion in Arabidopsis cytokinesis. Curr Biol 19(6):518–523

    CAS  PubMed  Google Scholar 

  157. Krupnova T, Stierhof YD, Hiller U, Strompen G, Muller S (2013) The microtubule-associated kinase-like protein RUNKEL functions in somatic and syncytial cytokinesis. Plant J 74(5):781–791

    CAS  PubMed  Google Scholar 

  158. De Schutter K, Joubes J, Cools T, Verkest A, Corellou F, Babiychuk E, Van Der Schueren E, Beeckman T, Kushnir S, Inze D, De Veylder L (2007) Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19:211–225

    PubMed Central  PubMed  Google Scholar 

  159. Shimotohno A, Ohno R, Bisova K, Sakaguchi N, Huang J, Koncz C, Uchimiya H, Umeda M (2006) Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. Plant J 47:701–710

    CAS  PubMed  Google Scholar 

  160. Humbert S, Zhong S, Deng Y, Howell SH, Rothstein SJ (2012) Alteration of the bZIP60/IRE1 pathway affects plant response to ER stress in Arabidopsis thaliana. PLoS One 7:e39023

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Moreno AA, Mukhtar MS, Blanco F, Boatwright JL, Moreno I, Jordan MR, Chen Y, Brandizzi F, Dong X, Orellana A, Pajerowska-Mukhar KM (2012) IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS One 7:e31944

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waltraud X. Schulze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zulawski, M., Schulze, W.X. (2015). The Plant Kinome. In: Schulze, W. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 1306. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2648-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2648-0_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2647-3

  • Online ISBN: 978-1-4939-2648-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics