Skip to main content

Neurotransmitter Release of Reprogrammed Cells Using Electrochemical Detection Methods

  • Protocol
  • First Online:
Neural Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2352))

Abstract

The detection of neurotransmitter release from reprogrammed human cell is an important demonstration of their functionality. Electrochemistry has the distinct advantages over alternative methods that it allows for the measuring of the analyte of interest at a high temporal resolution. This is necessary for fast events, such as neurotransmitter release and reuptake, which happen in the order of milliseconds to seconds. The precise description of these kinetic events can lead to insights into the function of cells in health and disease and allows for the exploration of events that might be missed using methods that look at absolute concentration values or methods that have a slower sampling rate. In the present chapter, we describe the use of constant potential amperometry and enzyme-coated multielectrode arrays for the detection of glutamate in vitro. These biosensors have the distinct advantage of “self-referencing,” a method providing high selectivity while retaining outstanding temporal resolution. Here, we provide a step-by-step user guide for a commercially available system and its application for in vitro systems such as reprogrammed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danysz W, Archer T (1994) Glutamate, learning and dementia-selection of evidence. Amino Acids 7(2):147–163. https://doi.org/10.1007/BF00814157

    Article  CAS  PubMed  Google Scholar 

  2. Butterfield DA, Pocernich CB (2003) The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS Drugs 17(9):641–652. https://doi.org/10.2165/00023210-200317090-00004

    Article  CAS  PubMed  Google Scholar 

  3. Greenamyre JT (1986) The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol 43(10):1058–1063. https://doi.org/10.1001/archneur.1986.00520100062016

    Article  CAS  PubMed  Google Scholar 

  4. Cross AJ, Slater P, Reynolds GP (1986) Reduced high-affinity glutamate uptake sites in the brains of patients with Huntington’s disease. Neurosci Lett 67(2):198–202. https://doi.org/10.1016/0304-3940(86)90397-6

    Article  CAS  PubMed  Google Scholar 

  5. Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326(22):1464–1468. https://doi.org/10.1056/NEJM199205283262204

    Article  CAS  PubMed  Google Scholar 

  6. Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44(11 Suppl 8):S14–S23

    CAS  PubMed  Google Scholar 

  7. Tamminga CA (2006) The neurobiology of cognition in schizophrenia. J Clin Psychiatry 67(9):e11

    Article  Google Scholar 

  8. Coyle JT (1996) The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 3(5):241–253

    Article  CAS  Google Scholar 

  9. Cortese BM, Phan KL (2005) The role of glutamate in anxiety and related disorders. CNS Spectr 10(10):820–830. https://doi.org/10.1017/s1092852900010427

    Article  PubMed  Google Scholar 

  10. Sanacora G, Zarate CA, Krystal JH, Manji HK (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7(5):426–437. https://doi.org/10.1038/nrd2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041. https://doi.org/10.1038/nature08797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108(25):10343–10348. https://doi.org/10.1073/pnas.1105135108

    Article  PubMed  PubMed Central  Google Scholar 

  13. Canals I, Ginisty A, Quist E, Timmerman R, Fritze J, Miskinyte G, Monni E, Hansen MG, Hidalgo I, Bryder D, Bengzon J, Ahlenius H (2018) Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nat Methods 15(9):693–696. https://doi.org/10.1038/s41592-018-0103-2

    Article  CAS  PubMed  Google Scholar 

  14. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9(3):205–218. https://doi.org/10.1016/j.stem.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hascup KN, Hascup ER, Litrtrell OM, Hinzman JM, Werner CE, Davis VA, Burmeister JJ, Pomerleau F, Quintero JE, Huettl P, Gerhardt GA (2013) Microelectrode array fabrication and optimization for selective neurochemical detection. In: Marinesco S, Dale N (eds) Microelectrode biosensors. Humana Press, Totowa, New Jersey

    Google Scholar 

  16. Adams RN (1990) In vivo electrochemical measurements in the CNS. Prog Neurobiol 35(4):297–311

    Article  CAS  Google Scholar 

  17. Gerhardt GA, Burmeister JJ (2006) Voltammetry in vivo for chemical analysis of the nervous system. In: Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  18. Marsden CA, Joseph MH, Kruk ZL, Maidment NT, O’Neill RD, Schenk JO, Stamford JA (1988) In vivo voltammetry--present electrodes and methods. Neuroscience 25(2):389–400. https://doi.org/10.1016/0306-4522(88)90247-3

    Article  CAS  PubMed  Google Scholar 

  19. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60(13):769A–779A. https://doi.org/10.1021/ac00164a001

    Article  CAS  PubMed  Google Scholar 

  20. Aldrin-Kirk P, Heuer A, Wang G, Mattsson B, Lundblad M, Parmar M, Bjorklund T (2016) DREADD modulation of transplanted DA neurons reveals a novel parkinsonian dyskinesia mechanism mediated by the serotonin 5-HT6 receptor. Neuron 90(5):955–968. https://doi.org/10.1016/j.neuron.2016.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lundblad M, Decressac M, Mattsson B, Bjorklund A (2012) Impaired neurotransmission caused by overexpression of alpha-synuclein in nigral dopamine neurons. Proc Natl Acad Sci U S A 109(9):3213–3219. https://doi.org/10.1073/pnas.1200575109

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miller EM, Pomerleau F, Huettl P, Russell VA, Gerhardt GA, Glaser PE (2012) The spontaneously hypertensive and Wistar Kyoto rat models of ADHD exhibit sub-regional differences in dopamine release and uptake in the striatum and nucleus accumbens. Neuropharmacology 63(8):1327–1334. https://doi.org/10.1016/j.neuropharm.2012.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aldrin-Kirk P, Heuer A, Rylander Ottosson D, Davidsson M, Mattsson B, Bjorklund T (2018) Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum. Neurobiol Dis 109(Pt A):148–162. https://doi.org/10.1016/j.nbd.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  24. Zahniser NR, Larson GA, Gerhardt GA (1999) In vivo dopamine clearance rate in rat striatum: regulation by extracellular dopamine concentration and dopamine transporter inhibitors. J Pharmacol Exp Ther 289(1):266–277

    CAS  PubMed  Google Scholar 

  25. Lourenco CF, Ferreira NR, Santos RM, Lukacova N, Barbosa RM, Laranjinha J (2014) The pattern of glutamate-induced nitric oxide dynamics in vivo and its correlation with nNOS expression in rat hippocampus, cerebral cortex and striatum. Brain Res 1554:1–11. https://doi.org/10.1016/j.brainres.2014.01.030

    Article  CAS  PubMed  Google Scholar 

  26. Lourenco CF, Santos RM, Barbosa RM, Cadenas E, Radi R, Laranjinha J (2014) Neurovascular coupling in hippocampus is mediated via diffusion by neuronal-derived nitric oxide. Free Radic Biol Med 73:421–429. https://doi.org/10.1016/j.freeradbiomed.2014.05.021

    Article  CAS  PubMed  Google Scholar 

  27. Santos RM, Lourenco CF, Pomerleau F, Huettl P, Gerhardt GA, Laranjinha J, Barbosa RM (2011) Brain nitric oxide inactivation is governed by the vasculature. Antioxid Redox Signal 14(6):1011–1021. https://doi.org/10.1089/ars.2010.3297

    Article  CAS  PubMed  Google Scholar 

  28. Benmansour S, Arroyo LD, Frazer A (2016) Comparison of the antidepressant-like effects of estradiol and that of selective serotonin reuptake inhibitors in middle-aged Ovariectomized rats. Front Aging Neurosci 8:311. https://doi.org/10.3389/fnagi.2016.00311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A (2002) Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci 22(15):6766–6772

    Article  CAS  Google Scholar 

  30. Howe WM, Ji J, Parikh V, Williams S, Mocaer E, Trocme-Thibierge C, Sarter M (2010) Enhancement of attentional performance by selective stimulation of alpha4beta2(*) nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology 35(6):1391–1401. https://doi.org/10.1038/npp.2010.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parikh V, Howe WM, Welchko RM, Naughton SX, D’Amore DE, Han DH, Deo M, Turner DL, Sarter M (2013) Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging. Eur J Neurosci 37(2):278–293. https://doi.org/10.1111/ejn.12090

    Article  PubMed  Google Scholar 

  32. Kucherenko IS, Didukh DY, Soldatkin OO, Soldatkin AP (2014) Amperometric biosensor system for simultaneous determination of adenosine-5′-triphosphate and glucose. Anal Chem 86(11):5455–5462. https://doi.org/10.1021/ac5006553

    Article  CAS  PubMed  Google Scholar 

  33. Van Gompel JJ, Bower MR, Worrell GA, Stead M, Chang SY, Goerss SJ, Kim I, Bennet KE, Meyer FB, Marsh WR, Blaha CD, Lee KH (2014) Increased cortical extracellular adenosine correlates with seizure termination. Epilepsia 55(2):233–244. https://doi.org/10.1111/epi.12511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scoggin JL, Tan C, Nguyen NH, Kansakar U, Madadi M, Siddiqui S, Arumugam PU, DeCoster MA, Murray TA (2019) An enzyme-based electrochemical biosensor probe with sensitivity to detect astrocytic versus glioma uptake of glutamate in real time in vitro. Biosens Bioelectron 126:751–757. https://doi.org/10.1016/j.bios.2018.11.023

    Article  CAS  PubMed  Google Scholar 

  35. Burmeister JJ, Pomerleau F, Palmer M, Day BK, Huettl P, Gerhardt GA (2002) Improved ceramic-based multisite microelectrode for rapid measurements of L-glutamate in the CNS. J Neurosci Methods 119(2):163–171. https://doi.org/10.1016/s0165-0270(02)00172-3

    Article  CAS  PubMed  Google Scholar 

  36. Day BK, Pomerleau F, Burmeister JJ, Huettl P, Gerhardt GA (2006) Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J Neurochem 96(6):1626–1635. https://doi.org/10.1111/j.1471-4159.2006.03673.x

    Article  CAS  PubMed  Google Scholar 

  37. Hascup ER, Hascup KN, Stephens M, Pomerleau F, Huettl P, Gratton A, Gerhardt GA (2010) Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex. J Neurochem 115(6):1608–1620. https://doi.org/10.1111/j.1471-4159.2010.07066.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hascup KN, Hascup ER (2014) Electrochemical techniques for subsecond neurotransmitter detection in live rodents. Comp Med 64(4):249–255

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pomerleau F, Day BK, Huettl P, Burmeister JJ, Gerhardt GA (2003) Real time in vivo measures of L-glutamate in the rat central nervous system using ceramic-based multisite microelectrode arrays. Ann N Y Acad Sci 1003:454–457. https://doi.org/10.1196/annals.1300.051

    Article  CAS  PubMed  Google Scholar 

  40. Hossain I, Tan C, Doughty PT, Dutta G, Murray TA, Siddiqui S, Iasemidis L, Arumugam PU (2018) A novel microbiosensor microarray for continuous ex vivo monitoring of gamma-aminobutyric acid in real-time. Front Neurosci 12:500

    Article  Google Scholar 

  41. Yao T (1983) A chemically-modified enzyme membrane-electrode as an Amperometric glucose sensor. Analytica Chimica Acta 148:27–33. https://doi.org/10.1016/S0003-2670(00)85149-1

    Article  CAS  Google Scholar 

  42. Dash MB, Tononi G, Cirelli C (2012) Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex. Sleep 35(7):909–919. https://doi.org/10.5665/sleep.1950

    Article  PubMed  PubMed Central  Google Scholar 

  43. Malik M, Chaudhary R, Pundir CS (2019) An improved enzyme nanoparticles based amperometric pyruvate biosensor for detection of pyruvate in serum. Enzym Microb Technol 123:30–38. https://doi.org/10.1016/j.enzmictec.2019.01.006

    Article  CAS  Google Scholar 

  44. Mascini M, Mazzei F (1987) Amperometric sensor for pyruvate with immobilized pyruvate oxidase. Analytica Chimica Acta 192(1):9–16. https://doi.org/10.1016/S0003-2670(00)85683-4

    Article  CAS  Google Scholar 

  45. Vasylieva N, Maucler C, Meiller A, Viscogliosi H, Lieutaud T, Barbier D, Marinesco S (2013) Immobilization method to preserve enzyme specificity in biosensors: consequences for brain glutamate detection. Anal Chem 85(4):2507–2515. https://doi.org/10.1021/ac3035794

    Article  CAS  PubMed  Google Scholar 

  46. Hascup KN, Rutherford EC, Quintero JE, Day BK, Nickell JR, Pomerleau F, Huettl P, Burmeister JJ, Gerhardt GA (2007) Second-by-second measures of L-glutamate and other neurotransmitters using enzyme-based microelectrode arrays. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. Frontiers in Neuroengineering. CRC Press, Boca Raton (FL)

    Google Scholar 

  47. Burmeister JJ, Pomerleau F, Quintero JE, Huettl P, Ai Y, Jakobsson J, Lundblad M, Heuer A, Slevin JT, Gerhardt GA (2018) In vivo electrochemical studies of optogenetic control of glutamate signaling measured using enzyme-based ceramic microelectrode arrays. In: Parrot S, BDenoroy L (eds) Biochemical approaches for glutamatergic neurotransmission, Neuromethods, vol 130. Humana Press, New York, NY, pp 327–351

    Chapter  Google Scholar 

  48. Burmeister JJ, Moxon K, Gerhardt GA (2000) Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem 72(1):187–192. https://doi.org/10.1021/ac9907991

    Article  CAS  PubMed  Google Scholar 

  49. Masinesco S, Frey O (2013) Microelectrode designs for oxidase-based biosensors. In: Marinesco S, Dale N (eds) Microelectrode biosensors, vol 80. Spriger science, Berlin/Heidelberg, pp 3–25

    Chapter  Google Scholar 

  50. Hascup KN, Hascup ER, Pomerleau F, Huettl P, Gerhardt GA (2008) Second-by-second measures of L-glutamate in the prefrontal cortex and striatum of freely moving mice. J Pharmacol Exp Ther 324(2):725–731. https://doi.org/10.1124/jpet.107.131698

    Article  CAS  PubMed  Google Scholar 

  51. McLamore ES, Mohanty S, Shi J, Claussen J, Jedlicka SS, Rickus JL, Porterfield DM (2010) A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. J Neurosci Methods 189(1):14–22. https://doi.org/10.1016/j.jneumeth.2010.03.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge my heavy reliance on excellent articles and reviews by the group of Greg Gerhardt (Kentucky University) and Erin Hascup (now Southern Illinois University) and especially the advice and support of Francois Pomerleau (Kentucky University) over the years. The Kentucky team is a great resource of expertise and an example on sharing and dissemination of knowledge. Furthermore, I would like to acknowledge Martin Lundblad for setting up the amperometry platform at Lund University as well as mentoring me from my start in Lund until the present day.

Financially, this work was supported by grants from the Swedish Research Council (VR), the Parkinsonsfonden, the Crafoord Stiftelsen, the Åke Wiberg Foundation, the Royal Physiographic Society in Lund, the Åhlensstiftelsen, the Jeanssons Foundation, and the Swedish Society for Medical Research (SSMF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Heuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heuer, A. (2021). Neurotransmitter Release of Reprogrammed Cells Using Electrochemical Detection Methods. In: Ahlenius, H. (eds) Neural Reprogramming. Methods in Molecular Biology, vol 2352. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1601-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1601-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1600-0

  • Online ISBN: 978-1-0716-1601-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics