Skip to main content

NanoSIP: NanoSIMS Applications for Microbial Biology

  • Protocol
  • First Online:
Microbial Systems Biology

Abstract

High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a standard method in systems biology and environmental biogeochemistry and is broadly used to decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labeling—an approach we refer to as nanoSIP—nanoSIMS imaging offers a distinctive means to quantify net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-complexity environments. While the majority of nanoSIP studies in environmental and microbial biology have focused on nitrogen and carbon metabolism (using 15N and 13C tracers), multiple advances have pushed the capabilities of this approach in the past decade. The development of a high-brightness oxygen ion source has enabled high-resolution metal analyses that are easier to perform, allowing quantification of metal distribution in cells and environmental particles. New preparation methods, tools for automated data extraction from large data sets, and analytical approaches that push the limits of sensitivity and spatial resolution have allowed for more robust characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS studies continue to be enhanced by correlation with orthogonal imaging and ‘omics approaches; when linked to molecular visualization methods, such as in situ hybridization and antibody labeling, these techniques enable in situ function to be linked to microbial identity and gene expression. Here we present an updated description of the primary materials, methods, and calculations used for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key methodological steps, and potential pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayali X, Weber PK, Brodie EL, Mabery S, Hoeprich PD, Pett-Ridge J (2012) High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. ISME J 6(6):1210–1221

    Article  CAS  PubMed  Google Scholar 

  2. Adamczyk J, Hesselsoe M, Iversen N, Horn M, Lehner A, Nielsen PH, Schloter M, Roslev P, Wagner M (2003) The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 69(11):6875–6887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ouverney CC, Fuhrman JA (1999) Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65(4):1746–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jehmlich N, Schmidt F, Taubert M, Seifert J, Bastida F, von Bergen M, Richnow H-H, Vogt C (2010) Protein-based stable isotope probing. Nat Protoc 5(12):1957–1966

    Article  CAS  PubMed  Google Scholar 

  5. Murrell JC, Whiteley AS (2011) Stable isotope probing and related technologies. ASM Press, Washington, DC, p 345

    Google Scholar 

  6. Koch BJ, McHugh TA, Hayer M, Schwartz E, Blazewicz SJ, Dijkstra P, van Gestel N, Marks JC, Mau RL, Morrissey EM, Pett-Ridge J, Hungate BA (2018) Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere 9(1):e02090–e02015

    Article  Google Scholar 

  7. Hillion F, Daigne B, Girard F, Slodzian G (1993) A new high performance instrument: the CAMECA NanoSIMS 50. In: Benninghoven A et al (eds) Secondary ion mass spectrometry: SIMS IX, vol 254-257. John Wiley & Sons, Chichester

    Google Scholar 

  8. Ghosal S, Leighton TJ, Wheeler KE, Hutcheon ID, Weber PK (2010) Spatially resolved characterization of water and ion incorporation in Bacillus spores. Appl Environ Microbiol 76(10):3275–3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293(5529):484–487

    Article  CAS  PubMed  Google Scholar 

  10. Smart K, Kilburn M, Salter C, Smith J, Grovenor C (2007) NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum. Int J Mass Spectrom 260(2–3):107–114

    Article  CAS  Google Scholar 

  11. Stadermann FJ, Walker RM, Zinner E (1999) Nanosims: the next generation ion probe for the microanalysis of extraterrestrial material. Meteorit Planet Sci 34:A111–A112

    Google Scholar 

  12. Guerquin-Kern J-L, Hillion F, Madelmont J-C, Labarre P, Papon J, Croisy A (2004) Ultra-structural cell distribution of the melanoma marker iodobenzamide: improved potentiality of SIMS imaging in life sciences. BioMed Eng. http://www.biomedical-engineering-online.com/content/3/1/10

  13. Kraft ML, Fishel SF, Marxer CG, Weber PK, Hutcheon ID, Boxer SG (2006) Quantitative analysis of supported membrane composition using the NanoSIMS. Appl Surf Sci 252(19):6950–6956

    Article  CAS  Google Scholar 

  14. Moreau JW, Weber PK, Martin MC, Gilbert B, Hutcheon ID, Banfield JF (2007) Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316:1600–1603

    Article  CAS  PubMed  Google Scholar 

  15. Peteranderl R, Lechene C (2004) Measure of carbon and nitrogen stable isotope ratios in cultured cells. J Am Soc Mass Spectrom 15(4):478–485

    Article  CAS  PubMed  Google Scholar 

  16. Wainwright M, Weber PK, Smith JB, Hutcheon ID, Klyce B, Wickramasinghe NC, Narlikar JV, Rajaratnam P (2004) Studies on bacteria-like particles sampled from the stratosphere. Aeorobiologia 20:237–240

    Article  Google Scholar 

  17. Galli Marxner C, Kraft ML, Weber PK, Hutcheon I, Boxer SG (2005) Supported membrane composition analysis by secondary ion mass spectrometry with high lateral resolution. Biophys J 88:2965–2975

    Article  CAS  Google Scholar 

  18. Dekas AE, Poretsky RS, Orphan VJ (2009) Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326(5951):422–426

    Article  CAS  PubMed  Google Scholar 

  19. Halm H, Musat N, Lam P, Langlois R, Musat F, Peduzzi S, Lavik G, Schubert CJ, Sinha B, LaRoche J, Kuypers MMM (2009) Co-occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland). Environ Microbiol 11(8):2190–2190

    Article  CAS  Google Scholar 

  20. Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, Horreard F, Amann R, Jørgensen BB, Kuypers MMM (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci 105(46):17861–17866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quintana C, Wu TD, Delatour B, Dhenain M, Guerquin-Kern JL, Croisy A (2007) Morphological and chemical studies of pathological human and mice brain at the subcellular level: correlation between light, electron, and NanoSIMS microscopies. Microsc Res Tech 70(4):281–295

    Article  CAS  PubMed  Google Scholar 

  22. Behrens S, Losekann T, Pett-Ridge J, Weber PK, Ng W, Stevenson BS, Hutcheon ID, Relman DA, Spormann AM (2008) Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl Environ Microbiol 74(10):3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Finzi-Hart J, Pett-Ridge J, Weber P, Popa R, Fallon SJ, Gunderson T, Hutcheon I, Nealson K, Capone DG (2008) Fixation and fate of carbon and nitrogen in Trichodesmium IMS101 using nanometer resolution secondary ion mass spectrometry (NanoSIMS). PNAS 106:6345–6350

    Article  Google Scholar 

  24. Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld A, Kampf JP, Distel D, Luyten Y, Bonventre J, Hentschel D, Park K, Ito S, Schwartz M, Benichou G, Slodzian G (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5(6):20

    Article  PubMed  PubMed Central  Google Scholar 

  25. Popa R, Weber PK, Pett-Ridge J, Finzi JA, Fallon SJ, Hutcheon ID, Nealson KH, Capone DG (2007) Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J 1(4):354–360

    Article  CAS  PubMed  Google Scholar 

  26. Ghosal S, Fallon SJ, Leighton T, Wheeler KE, Hutcheon ID, Weber PK (2008) Imaging and 3D elemental characterization of intact bacterial spores with high-resolution secondary ion mass spectrometry (NanoSIMS) depth profile analysis. Anal Chem 80(15):5986–5992

    Article  CAS  PubMed  Google Scholar 

  27. Lechene CP, Luyten Y, McMahon G, Distel DL (2007) Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317:1563–1566

    Article  CAS  PubMed  Google Scholar 

  28. Herrmann A, Ritz K, Nunan N, Clode P, Pett-Ridge J, Kilburn M, Murphy D, O’Donnell A, Stockdale E (2007) Nano-scale secondary ion mass spectrometry – a new analytical tool in biogeochemistry and soil ecology: a review article. Soil Biol Biochem 39:1835–1850

    Article  CAS  Google Scholar 

  29. Mueller CW, Weber PK, Kilburn MR, Hoeschen C, Kleber M, Pett-Ridge J (2013) Advances in the analysis of biogeochemical interfaces: NanoSIMS to investigate soil microenvironments. In: Sparks D (ed) Advances in agronomy. Elsevier, Amsterdam

    Google Scholar 

  30. Renslow RS, Lindemann SR, Cole JK, Zhu Z, Anderton CR (2016) Quantifying element incorporation in multispecies biofilms using nanoscale secondary ion mass spectrometry image analysis. Biointerphases 11(2):02A322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mayali X (2020) NanoSIMS: microscale quantification of biogeochemical activity with large-scale impacts. Annu Rev Mar Sci 12:449–467

    Article  Google Scholar 

  32. Gao D, Huang X, Tao Y (2016) A critical review of NanoSIMS in analysis of microbial metabolic activities at single-cell level. Crit Rev Biotechnol 36(5):884–890

    Article  CAS  PubMed  Google Scholar 

  33. Zhao F-J, Moore KL, Lombi E, Zhu Y-G (2014) Imaging element distribution and speciation in plant cells. Trends Plant Sci 19(3):183–192

    Article  CAS  PubMed  Google Scholar 

  34. Musat N, Musat F, Weber PK, Pett-Ridge J (2016) Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol 41:114–121

    Article  CAS  PubMed  Google Scholar 

  35. Agüi-Gonzalez P, Jähne S, Phan NT (2019) SIMS imaging in neurobiology and cell biology. J Anal At Spectrom 34(7):1355–1368

    Article  Google Scholar 

  36. Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38:53–74

    Article  CAS  PubMed  Google Scholar 

  37. Nuñez J, Renslow R, Cliff JB III, Anderton CR (2018) NanoSIMS for biological applications: current practices and analyses. Biointerphases 13(3):03B301

    Article  CAS  Google Scholar 

  38. Gorman BL, Kraft ML (2019) High-resolution secondary ion mass spectrometry analysis of cell membranes. ACS Publications, Washington, DC

    Google Scholar 

  39. CAMECA. NanoSIMS 50L: scientific publications. https://www.cameca.com/products/sims/nanosims

  40. Pett-Ridge J, Weber PK (2012) NanoSIP: NanoSIMS applications for microbial biology. In: Navid A (ed) Microbial systems biology: methods and protocols. Humana, New York, NY

    Google Scholar 

  41. Dekas AE, Parada AE, Mayali X, Fuhrman JA, Wollard J, Weber PK, Pett-Ridge J (2019) Characterizing chemoautotrophy and heterotrophy in marine archaea and bacteria with single-cell multi-isotope nanoSIP. Front Microbiol 10:2682

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chadwick GL, Otero FJ, Gralnick JA, Bond DR, Orphan VJ (2019) NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Proc Natl Acad Sci 116(41):20716–20724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Volland J-M, Schintlmeister A, Zambalos H, Reipert S, Mozetič P, Espada-Hinojosa S, Turk V, Wagner M, Bright M (2018) NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host. ISME J 12(3):714–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, Lambrecht J, Müller S, Wick LY, Musat N (2019) Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol 10:2814

    Article  PubMed  PubMed Central  Google Scholar 

  45. Braun PD, Schulz-Vogt HN, Vogts A, Nausch M (2018) Differences in the accumulation of phosphorus between vegetative cells and heterocysts in the cyanobacterium Nodularia spumigena. Sci Rep 8(1):1–6

    Google Scholar 

  46. Gross A, Lin Y, Weber PK, Pett-Ridge J, Silver WL (2020) The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests. Ecology 101(2):e02928

    Article  PubMed  Google Scholar 

  47. Ackerman CM, Weber PK, Xiao T, Thai B, Kuo TJ, Zhang E, Pett-Ridge J, Chang CJ (2018) Multimodal LA-ICP-MS and nanoSIMS imaging enables copper mapping within photoreceptor megamitochondria in a zebrafish model of Menkes disease. Metallomics 10(3):474–485

    Article  CAS  PubMed  Google Scholar 

  48. Hong-Hermesdorf A, Miethke M, Gallaher SD, Kropat J, Dodani SC, Barupala D, Chan J, Domaille DW, Shirasaki DI, Loo JA, Weber PK, Pett-Ridge J, Stemmler TL, Chang CJ, Merchant SS (2014) Selective sub-cellular visualization of trace metals identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat Chem Biol 10:1034–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dawson KS, Scheller S, Dillon JG, Orphan VJ (2016) Stable isotope phenotyping via cluster analysis of NanoSIMS data as a method for characterizing distinct microbial ecophysiologies and sulfur-cycling in the environment. Front Microbiol 7:774

    Article  PubMed  PubMed Central  Google Scholar 

  50. Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, Palatinszky M, Schintlmeister A, Schmid MC, Hanson BT (2015) Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci 112(2):E194–E203

    Article  CAS  PubMed  Google Scholar 

  51. Kopf SH, McGlynn SE, Green-Saxena A, Guan Y, Newman DK, Orphan VJ (2015) Heavy water and 15 N labelling with N ano SIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats. Environ Microbiol 17(7):2542–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ploug H, Musat N, Adam B, Moraru CL, Lavik G, Vagner T, Bergman B, Kuypers MMM (2010) Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J 4(9):1215–1223

    Article  CAS  PubMed  Google Scholar 

  53. Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351(6274):703–707

    Article  CAS  PubMed  Google Scholar 

  54. Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ (2016) Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J 10(3):678–692

    Article  CAS  PubMed  Google Scholar 

  55. Green-Saxena A, Dekas AE, Dalleska NF, Orphan VJ (2014) Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane. ISME J 8(1):150–163

    Article  CAS  PubMed  Google Scholar 

  56. Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MMM, Schubert CJ (2015) Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 9(9):1991–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marlow JJ, Steele JA, Ziebis W, Thurber AR, Levin LA, Orphan VJ (2014) Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nat Commun 5(1):1–12

    Article  CAS  Google Scholar 

  58. Oswald K, Graf JS, Littmann S, Tienken D, Brand A, Wehrli B, Albertsen M, Daims H, Wagner M, Kuypers MM (2017) Crenothrix are major methane consumers in stratified lakes. ISME J 11(9):2124–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Foster RA, Kuypers MM, Vagner T, Paerl RW, Musat N, Zehr JP (2011) Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J 5(9):1484–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, Kuypers MMM, Zehr JP (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337(6101):1546–1550

    Article  CAS  PubMed  Google Scholar 

  61. Adam B, Klawonn I, Sveden JB, Bergkvist J, Nahar N, Walve J, Littmann S, Whitehouse MJ, Lavik G, Kuypers MMM, Ploug H (2016) N2-fixation, ammonium release and N-transfer to the microbial and classical food web within a plankton community. ISME J 10(2):450–459

    Article  CAS  PubMed  Google Scholar 

  62. Berry D, Stecher B, Schintlmeister A, Reichert J, Brugiroux S, Wild B, Wanek W, Richter A, Rauch I, Decker T (2013) Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc Natl Acad Sci 110(12):4720–4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Carpenter KJ, Weber PK, Davisson ML, Pett-Ridge J, Haverty MI, Keeling PJ (2013) Correlated SEM, FIB-SEM, TEM, and NanoSIMS imaging of microbes from the hindgut of a lower termite: methods for in situ functional and ecological studies of uncultivable microbes. Microsc Microanal 19(06):1490–1501

    Article  CAS  PubMed  Google Scholar 

  64. Tai V, Carpenter KJ, Weber PK, Nalepa CA, Perlman SJ, Keeling PJ (2016) Genome evolution and nitrogen-fixation in bacterial ectosymbionts of a protist inhabiting wood-feeding cockroaches. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00611-16

  65. Ceh J, Kilburn MR, Cliff JB, Raina JB, van Keulen M, Bourne DG (2013) Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol Evol 3(8):2393–2400

    Article  Google Scholar 

  66. Pernice M, Dunn SR, Tonk L, Dove S, Domart-Coulon I, Hoppe P, Schintlmeister A, Wagner M, Meibom A (2015) A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reef-building corals. Environ Microbiol 17(10):3570–3580

    Article  CAS  PubMed  Google Scholar 

  67. Wangpraseurt D, Pernice M, Guagliardo P, Kilburn MR, Clode PL, Polerecky L, Kühl M (2016) Light microenvironment and single-cell gradients of carbon fixation in tissues of symbiont-bearing corals. ISME J 10(3):788–792

    Article  CAS  PubMed  Google Scholar 

  68. Lema KA, Clode PL, Kilburn MR, Thornton R, Willis BL, Bourne DG (2016) Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora. ISME J 10(7):1804–1808

    Article  CAS  PubMed  Google Scholar 

  69. Kopp C, Domart-Coulon I, Barthelemy D, Meibom A (2016) Nutritional input from dinoflagellate symbionts in reef-building corals is minimal during planula larval life stage. Sci Adv 2(3):e1500681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yang S-H, Tandon K, Lu C-Y, Wada N, Shih C-J, Hsiao SS-Y, Jane W-N, Lee T-C, Yang C-M, Liu C-T (2019) Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome 7(1):1–13

    Article  Google Scholar 

  71. Samo TJ, Kimbrel JA, Nilson DJ, Pett-Ridge J, Weber PK, Mayali X (2018) Attachment between heterotrophic bacteria and microalgae influences symbiotic microscale interactions. Environ Microbiol 20(2):4385–4400

    Article  CAS  PubMed  Google Scholar 

  72. de-Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM, Hernandez J-P, Prufert-Bebout L, Bashan Y (2016) Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (fluorescent in situ hybridization). Algal Res 15:179–186

    Article  Google Scholar 

  73. Alonso C, Musat N, Adam B, Kuypers M, Amann R (2012) HISH–SIMS analysis of bacterial uptake of algal-derived carbon in the Río de la Plata estuary. Syst Appl Microbiol 35(8):541–548

    Article  CAS  PubMed  Google Scholar 

  74. Leroy C, Jauneau A, Martinez Y, Cabin-Flaman A, Gibouin D, Orivel J, Séjalon-Delmas N (2017) Exploring fungus–plant N transfer in a tripartite ant–plant–fungus mutualism. Ann Bot 120(3):417–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Lee JZ, Burow LC, Woebken D, Everroad RC, Kubo MD, Spormann AM, Weber PK, Pett-Ridge J, Bebout BM, Hoehler TM (2014) Fermentation couples chloroflexi and sulfate-reducing bacteria to cyanobacteria in hypersaline microbial mats. Front Microbiol 5:61

    PubMed  PubMed Central  Google Scholar 

  76. Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK (2013) An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol 15(6):1870–1881

    Article  CAS  PubMed  Google Scholar 

  77. Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205(4):1537–1551

    Article  CAS  PubMed  Google Scholar 

  78. Kuga Y, Sakamoto N, Yurimoto H (2014) Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms. New Phytol 202(2):594–605

    Article  CAS  PubMed  Google Scholar 

  79. Pett-Ridge J, Firestone MK (2017) Using stable isotopes to explore root-microbe-mineral interactions in soil. Rhizosphere 3:244–253

    Article  Google Scholar 

  80. Hestrin R, Hammer EC, Mueller CW, Lehmann J (2019) Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun Biol 2(1):1–9

    Article  CAS  Google Scholar 

  81. Gorka S, Dietrich M, Mayerhofer W, Gabriel R, Wiesenbauer J, Martin V, Zheng Q, Imai B, Prommer J, Weidinger M (2019) Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front Microbiol 10:168

    Article  PubMed  PubMed Central  Google Scholar 

  82. Worrich A, Stryhanyuk H, Musat N, König S, Banitz T, Centler F, Frank K, Thullner M, Harms H, Richnow H-H (2017) Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat Commun 8(1):1–9

    Article  CAS  Google Scholar 

  83. Bougoure J, Ludwig M, Brundrett M, Cliff J, Clode P, Kilburn M, Grierson P (2014) High-resolution secondary ion mass spectrometry analysis of carbon dynamics in mycorrhizas formed by an obligately myco-heterotrophic orchid. Plant Cell Environ 37(5):1223–1230

    Article  CAS  PubMed  Google Scholar 

  84. Hill PW, Broughton R, Bougoure J, Havelange W, Newsham KK, Grant H, Murphy DV, Clode P, Ramayah S, Marsden KA (2019) Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecol Lett 22(12):2111–2119

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mergelov N, Mueller CW, Prater I, Shorkunov I, Dolgikh A, Zazovskaya E, Shishkov V, Krupskaya V, Abrosimov K, Cherkinsky A (2018) Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci Rep 8(1):1–15

    Article  CAS  Google Scholar 

  86. Kopittke PM, Dalal RC, Hoeschen C, Li C, Menzies NW, Mueller CW (2020) Soil organic matter is stabilized by organo-mineral associations through two key processes: the role of the carbon to nitrogen ratio. Geoderma 357:113974

    Article  CAS  Google Scholar 

  87. Keiluweit M, Bougoure JJ, Zeglin LH, Myrold DD, Weber PK, Pett-Ridge J, Kleber M, Nico PS (2012) Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon. Geochim Cosmochim Acta 95:213–226

    Article  CAS  Google Scholar 

  88. Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5(6):588–595

    Article  CAS  Google Scholar 

  89. Morrison KD, Misra R, Williams LB (2016) Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance. Sci Rep 6:19043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Londono SC, Hartnett HE, Williams LB (2017) Antibacterial activity of aluminum in clay from the Colombian Amazon. Environ Sci Technol 51(4):2401–2408

    Article  CAS  PubMed  Google Scholar 

  91. Eichorst SA, Strasser F, Woyke T, Schintlmeister A, Wagner M, Woebken D (2015) Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol Ecol 91(10):fiv106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Pasulka AL, Thamatrakoln K, Kopf SH, Guan Y, Poulos B, Moradian A, Sweredoski MJ, Hess S, Sullivan MB, Bidle KD (2018) Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ Microbiol 20(2):671–692

    Article  CAS  PubMed  Google Scholar 

  93. Greenwood DJ, Dos Santos MS, Huang S, Russell MR, Collinson LM, MacRae JI, West A, Jiang H, Gutierrez MG (2019) Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science 364(6447):1279–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gates SD, Condit RC, Moussatche N, Stewart BJ, Malkin AJ, Weber PK (2018) High initial sputter rate found for vaccinia virions using isotopic labeling, nanoSIMS, and AFM. Anal Chem 90(3):1613–1620

    Article  CAS  PubMed  Google Scholar 

  95. Stuart RK, Mayali X, Boaro AA, Zemla A, Everroad RC, Nilson D, Weber PK, Lipton M, Bebout BM, Pett-Ridge J (2016) Light regimes shape utilization of extracellular organic C and N in a cyanobacterial biofilm. mBio 7(3):e00650–e00616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stuart RK, Mayali X, Lee JZ, Everroad RC, Hwang M, Bebout BM, Weber PK, Pett-Ridge J, Thelen MP (2016) Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J 10(5):1240–1251

    Article  CAS  PubMed  Google Scholar 

  97. Stuart RK, Mayali X, Thelen MP, Pett-Ridge J, Weber PK (2017) Measuring cyanobacterial metabolism in biofilms with NanoSIMS isotope imaging and scanning electron microscopy (SEM). Bioprotocol 7:e2263

    Google Scholar 

  98. Probst AJ, Weinmaier T, Raymann K, Perras A, Emerson JB, Rattei T, Wanner G, Klingl A, Berg IA, Yoshinaga M, Viehweger B, Hinrichs K-U, Thomas BC, Meck S, Auerbach AK, Heise M, Schintlmeister A, Schmid M, Wagner M, Gribaldo S, Banfield JF, Moissl-Eichinger C (2014) Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat Commun 5:5497

    Article  CAS  PubMed  Google Scholar 

  99. Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, von Bergen M, Herbold C, Wagner M, Richter A (2019) Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad Sci 116(17):8515–8524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sheik AR, Muller EE, Audinot J-N, Lebrun LA, Grysan P, Guignard C, Wilmes P (2016) In situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella. ISME J 10(5):1274–1279

    Article  CAS  PubMed  Google Scholar 

  101. Nikolic N, Schreiber F, Kiviet DJ, Bergmiller T, Littmann S, Kuypers MM, Ackermann M (2017) Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations. PLoS Genet 13(12):e1007122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Gangwe Nana GY, Ripoll C, Cabin-Flaman A, Gibouin D, Delaune A, Jannière L, Grancher G, Chagny G, Loutelier-Bourhis C, Lentzen E (2018) Division-based, growth rate diversity in bacteria. Front Microbiol 9:849

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zimmermann M, Escrig S, Hübschmann T, Kirf MK, Brand A, Inglis RF, Musat N, Müller S, Meibom A, Ackermann M (2015) Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front Microbiol 6:243

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tsednee M, Castruita M, Salomé PA, Sharma A, Lewis BE, Schmollinger SR, Strenkert D, Holbrook K, Otegui MS, Khatua K (2019) Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions. J Biol Chem 294(46):17626–17641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kessler N, Armoza-Zvuloni R, Wang S, Basu S, Weber PK, Stuart RK, Shaked Y (2020) Selective collection of iron-rich dust particles by natural Trichodesmium colonies. ISME J 14(1):91–103

    Article  CAS  PubMed  Google Scholar 

  106. Newsome L, Lopez Adams R, Downie HF, Moore KL, Lloyd JR (2018) NanoSIMS imaging of extracellular electron transport processes during microbial iron (III) reduction. FEMS Microbiol Ecol 94(8):fiy104

    Article  CAS  PubMed Central  Google Scholar 

  107. Fleming E, Woyke T, Donatello R, Kuypers MM, Sczyrba A, Littmann S, Emerson D (2018) Insights into the fundamental physiology of the uncultured Fe-oxidizing bacterium Leptothrix ochracea. Appl Environ Microbiol 84(9). https://doi.org/10.1128/AEM.02239-17

  108. Stryhanyuk H, Calabrese F, Kümmel S, Musat F, Richnow HH, Musat N (2018) Calculation of single cell assimilation rates from SIP-NanoSIMS-derived isotope ratios: a comprehensive approach. Front Microbiol 9:2342

    Article  PubMed  PubMed Central  Google Scholar 

  109. Arandia-Gorostidi N, Weber PK, Alonso-Saez L, Moran XAG, Mayali X (2017) Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J 11(3):641–650

    Article  CAS  PubMed  Google Scholar 

  110. Frisz JF, Lou K, Klitzing HA, Hanafin WP, Lizunov V, Wilson RL, Carpenter KJ, Kim R, Hutcheon ID, Zimmerberg J (2013) Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proc Natl Acad Sci 110(8):E613–E622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Smith NS, Boswell RW, Tesch PP, Martin NP (2017) Rf system, magnetic filter, and high voltage isolation for an inductively coupled plasma ion source, Google Patents

    Google Scholar 

  112. Smith N, Tesch P, Martin N, Kinion D (2008) A high brightness source for nano-probe secondary ion mass spectrometry. Appl Surf Sci 255(4):1606–1609

    Article  CAS  Google Scholar 

  113. Malherbe J, Penen F, Isaure M-P, Frank J, Hause G, Dobritzsch D, Gontier E, Horréard FO, Hillion FO, Schaumlöffel D (2016) A new radio frequency plasma oxygen primary ion source on nano secondary ion mass spectrometry for improved lateral resolution and detection of electropositive elements at single cell level. Anal Chem 88(14):7130–7136

    Article  CAS  PubMed  Google Scholar 

  114. Cabin-Flaman A, Monnier AFO, Coffinier Y, Audinot J-N, Gibouin D, Wirtz T, Boukherroub R, Migeon H-N, Bensimon A, Jannière L (2011) Combed single DNA molecules imaged by secondary ion mass spectrometry. Anal Chem 83(18):6940–6947

    Article  CAS  PubMed  Google Scholar 

  115. Cabin-Flaman A, Monnier A-F, Coffinier Y, Audinot J-N, Gibouin D, Wirtz T, Boukherroub R, Migeon H-N, Bensimon A, Jannière L (2016) Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling. F1000Res 5:27429742

    Article  CAS  Google Scholar 

  116. Weber PK, Graham GA, Teslich NE, MoberlyChan W, Ghosal S, Leighton TJ, Wheeler KE (2010) NanoSIMS imaging of Bacillus spores sectioned by focused ion beam. J Microsc 238:189–199

    Article  CAS  PubMed  Google Scholar 

  117. Wilson RG, Stevie FA, Magee CW (1989) Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis. Wiley, New York, NY

    Google Scholar 

  118. Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MM (2012) Look@ NanoSIMS–a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol 14(4):1009–1023

    Article  CAS  PubMed  Google Scholar 

  119. Huang W, Hammel KE, Hao J, Thompson A, Timokhin VI, Hall SJ (2019) Enrichment of lignin-derived carbon in mineral-associated soil organic matter. Environ Sci Technol 53(13):7522–7531

    Article  CAS  PubMed  Google Scholar 

  120. Whitman T, Zhu Z, Lehmann J (2014) Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon. Environ Sci Technol 48(23):13727–13734

    Article  CAS  PubMed  Google Scholar 

  121. Hatton P-J, Remusat L, Zeller B, Brewer EA, Derrien D (2015) NanoSIMS investigation of glycine-derived C and N retention with soil organo-mineral associations. Biogeochemistry 125(3):303–313

    Article  CAS  Google Scholar 

  122. Li T, Wu TD, Mazeas L, Toffin L, Guerquin-Kern JL, Leblon G, Bouchez T (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10(3):580–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Benn PA, Perle MA (1992) Chromosome staining and banding techniques. In: Rooney DE, Czepulkowski BH (eds) Human cytogenetics: volume I, constitutional analysis: a practical approach. Oxford University Press, New York, NY

    Google Scholar 

  124. Latt SA (1973) Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc Natl Acad Sci U S A 49:3395–3399

    Article  Google Scholar 

  125. Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Radajewski S, Ineson P, Parekh NR, Murrell J (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403(10):646–649

    Article  CAS  PubMed  Google Scholar 

  127. Jensen LHS, Cheng T, Plane FOV, Escrig S, Comment A, van den Brandt B, Humbel BM, Meibom A (2016) En route to ion microprobe analysis of soluble compounds at the single cell level: the CryoNanoSIMS. In: European microscopy congress 2016: proceedings. Wiley, New York, NY

    Google Scholar 

  128. Lovrić J, Malmberg P, Johansson BR, Fletcher JS, Ewing AG (2016) Multimodal imaging of chemically fixed cells in preparation for NanoSIMS. Anal Chem 88(17):8841–8848

    Article  PubMed  CAS  Google Scholar 

  129. Gibbin E, Gavish A, Domart-Coulon I, Kramarsky-Winter E, Shapiro O, Meibom A, Vardi A (2018) Using NanoSIMS coupled with microfluidics to visualize the early stages of coral infection by Vibrio coralliilyticus. BMC Microbiol 18(1):1–10

    Article  CAS  Google Scholar 

  130. Nunan N, Ritz K, Crabb D, Harris K, Wu K, Crawford JW, Young IM (2001) Quantification of the in situ distribution of soil bacteria by large-scale imaging of thin sections of undisturbed soil. FEMS Microbiol Ecol 37(1):67–77

    Article  CAS  Google Scholar 

  131. Kuo J (2007) Electron microscopy: methods and protocols. In: Methods in molecular biology, 2nd edn. Humana, Totowa, NJ

    Google Scholar 

  132. Tippkötter R, Ritz K (1996) Evaluation of polyester, epoxy and acrylic resins for suitability in preparation of soil thin sections for in situ biological studies. Geoderma 69(1–2):31–57

    Article  Google Scholar 

  133. Chandra S, Morrison GH (1992) Sample preparation of animal tissues and cell cultures for secondary ion mass spectrometry (SIMS) microscopy. Biol Cell 74:31–42

    Article  CAS  PubMed  Google Scholar 

  134. Dykstra MJ, Reuss LE (eds) (2003) Biological electron microscopy: theory, techniques and troubleshooting, 2nd edn. Kluwer Academic/Plenum Publishers, New York, NY

    Google Scholar 

  135. Echlin P (1992) Low-temperature microscopy and analysis. Springer, New York, NY

    Book  Google Scholar 

  136. Musat N, Stryhanyuk H, Bombach P, Adrian L, Audinot J-N, Richnow HH (2014) The effect of FISH and CARD-FISH on the isotopic composition of 13C- and 15N-labeled Pseudomonas putida cells measured by nanoSIMS. Syst Appl Microbiol 37(4):267–276

    Article  CAS  PubMed  Google Scholar 

  137. Woebken D, Burow LC, Behnam F, Mayali X, Schintlmeister A, Fleming ED, Prufert-Bebout L, Singer SW, Lopez Cortes A, Hoehler TM, Pett-Ridge J, Spormann AM, Wagner M, Weber PK, Bebout BM (2015) Revisiting N-2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. ISME J 9(2):485–496

    Article  CAS  PubMed  Google Scholar 

  138. Herrmann AM, Clode PL, Fletcher IR, Nunan N, Stockdale EA, O'Donnel AG, Murphy DV (2007) A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry. Rapid Commun Mass Spectrom 21(1):29–34

    Article  CAS  PubMed  Google Scholar 

  139. Weng N, Jiang H, Wang W-X (2017) In situ subcellular imaging of copper and zinc in contaminated oysters revealed by nanoscale secondary ion mass spectrometry. Environ Sci Technol 51(24):14426–14435

    Article  CAS  PubMed  Google Scholar 

  140. Rogge A, Flintrop CM, Iversen MH, Salter I, Fong AA, Vogts A, Waite AM (2018) Hard and soft plastic resin embedding for single-cell element uptake investigations of marine-snow-associated microorganisms using nano-scale secondary ion mass spectrometry. Limnol Oceanogr Methods 16(8):484–503

    Article  CAS  Google Scholar 

  141. Fike DA, Gammon CL, Ziebis W, Orphan VJ (2008) Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. ISME J 2(7):749–759

    Article  CAS  PubMed  Google Scholar 

  142. De Gregorio BT, Stroud RM, Nittler LR, Alexander CMOD, Kilcoyne ALD, Zega TJ (2010) Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation. Geochim Cosmochim Acta 74(15):4454–4470

    Article  CAS  Google Scholar 

  143. Lehmann J, Liang BQ, Solomon D, Lerotic M, Luizao F, Kinyangi J, Schafer T, Wirick S, Jacobsen C (2005) Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles. Global Biogeochem Cycles 29:Art. No. GB1013

    Google Scholar 

  144. Flynn GJ, Keller LP, Jacobsen C, Wirick S (2004) An assessment of the amount and types of organic matter contributed to the Earth by interplanetary dust. Adv Space Res 33:57–66

    Article  CAS  Google Scholar 

  145. Gnaser H (1997) Formation of metastable N2- and CO-anions in sputtering. Phys Rev A 56(4):R2518

    Article  CAS  Google Scholar 

  146. McMahon G, Saint-Cyr HF, Lechene C, Unkefer CJ (2006) CN− secondary ions form by recombination as demonstrated using multi-isotope mass spectrometry of 13C- and 15N-labeled polyglycine. J Am Soc Mass Spectrom 17(8):1181–1187

    Article  CAS  PubMed  Google Scholar 

  147. Mayali X, Weber PK, Nuccio E, Lietard J, Somoza M, Blazewicz SJ, Pett-Ridge J (2019) Chip-SIP: stable isotope probing analyzed with rRNA-targeted microarrays and NanoSIMS. In: Stable isotope probing. Springer, New York, NY, pp 71–87

    Chapter  Google Scholar 

  148. Gnaser H (1999) Singly-and doubly-negative carbon clusters in sputtering: energy spectra, abundance distributions and unimolecular fragmentation. Nucl Instrum Methods Phys Res, Sect B 149(1–2):38–52

    Article  CAS  Google Scholar 

  149. Weber PK, Bacon CR, Hutcheon ID, Ingram BL, Wooden JL (2005) Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths. Geochim Cosmochim Acta 69(5):1225–1239

    Article  CAS  Google Scholar 

  150. Ghosal S, Fallon SJ, Leighton T, Wheeler K, Hutcheon ID, Weber PK (2006) Analysis of bacterial spore permeability to water and ions using NanoSecondary Ion Mass Spectrometry (NanoSIMS). Abstr Pap Am Chem Soc 231:3

    Google Scholar 

  151. Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PCW, Anbar AD, Oremland RS (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332(6034):1163–1166

    Article  CAS  PubMed  Google Scholar 

  152. Hauri EH, Papineau D, Wang J, Hillion F (2016) High-precision analysis of multiple sulfur isotopes using NanoSIMS. Chem Geol 420:148–161

    Article  CAS  Google Scholar 

  153. Chandra S, Smith DR, Morrison GH (2000) Subcellular imaging by dynamic SIMS ion microscopy. Anal Chem 72:104A–114A

    Article  CAS  PubMed  Google Scholar 

  154. Guerquin-Kern JL, Wu TD, Quintana C, Croisy A (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). BBA-Gen Subjects 1724(3):228–238

    Article  CAS  Google Scholar 

  155. Burns MS, File DM, Deline V, Galle P (1986) Matrix effects in secondary ion mass spectrometric analysis of biological tissue. Scan Electron Microscopy 1986(4):1277–1290

    Google Scholar 

  156. Harris WC, Chandra S, Morrison GH (1983) Ion implantation for quantitative ion microscopy of biological soft tissue. Anal Chem 55(12):1959–1963

    Article  CAS  PubMed  Google Scholar 

  157. Phinney D (2006) Quantitative analysis of microstructures by secondary ion mass spectrometry. Microsc Microanal 12(4):352

    Article  CAS  PubMed  Google Scholar 

  158. Decelle J, Veronesi G, Gallet B, Stryhanyuk H, Benettoni P, Schmidt M, Tucoulou R, Passarelli M, Bohic S, Clode P (2020) Subcellular chemical imaging: new avenues in cell biology. Trends Cell Biol 30(3):173–188

    Article  CAS  PubMed  Google Scholar 

  159. Penen F, Malherbe J, Isaure M-P, Dobritzsch D, Bertalan I, Gontier E, Le Coustumer P, Schaumlöffel D (2016) Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS. J Trace Elem Med Biol 37:62–68

    Article  CAS  PubMed  Google Scholar 

  160. Nomaki H, LeKieffre C, Escrig S, Meibom A, Yagyu S, Richardson EA, Matsuzaki T, Murayama M, Geslin E, Bernhard JM (2018) Innovative TEM-coupled approaches to study foraminiferal cells. Mar Micropaleontol 138:90–104

    Article  Google Scholar 

  161. Kraft ML, Weber PK, Longo ML, Hutcheon ID, Boxer SG (2006) Phase separation of lipid membranes analyzed with high-resolution secondary ion mass spectrometry. Science 313:1948–1951

    Article  CAS  PubMed  Google Scholar 

  162. Wirtz T, Fleming Y, Gysin U, Glatzel T, Wegmann U, Meyer E, Maier U, Rychen J (2013) Combined SIMS-SPM instrument for high sensitivity and high-resolution elemental 3D analysis. Surf Interface Anal 45(1):513–516

    Article  CAS  Google Scholar 

  163. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Article  CAS  PubMed  Google Scholar 

  164. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172(2):762–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68(6):3094–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Woebken D, Burow LC, Prufert-Bebout L, Bebout BM, Hoehler TM, Pett-Ridge J, Spormann AM, Weber PK, Singer SW (2012) Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis. ISME J 6(7):1427–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lemaire R, Webb RI, Yuan Z (2008) Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME J 2(5):528–541

    Article  CAS  PubMed  Google Scholar 

  168. Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ (2014) In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 16(8):2568–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bradley JP, Dai ZR, Erni R, Browning ND, Graham GA, Weber PK, Smith JB, Hutcheon ID, Ishii H, Bajt S, Floss C, Stadermann FJ, Sandford S (2005) An astronomical 2175 Å feature in interplanetary dust particles. Science 307:244–247

    Article  CAS  PubMed  Google Scholar 

  170. Remusat L, Hatton P-J, Nico PS, Zeller B, Kleber M, Derrien D (2012) NanoSIMS study of organic matter associated with soil aggregates: advantages, limitations, and combination with STXM. Environ Sci Technol 46(7):3943–3949

    Article  CAS  PubMed  Google Scholar 

  171. De Samber B, De Rycke R, De Bruyne M, Kienhuis M, Sandblad L, Bohic S, Cloetens P, Urban C, Polerecky L, Vincze L (2020) Effect of sample preparation techniques upon single cell chemical imaging: a practical comparison between synchrotron radiation based X-ray fluorescence (SR-XRF) and nanoscopic secondary ion mass spectrometry (nano-SIMS). Anal Chim Acta 1106:22–32

    Article  PubMed  CAS  Google Scholar 

  172. Lehmann J, Kinyangi J, Solomon D (2007) Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 85(1):45–57

    Article  Google Scholar 

  173. Wan J, Tyliszczak T, Tokunaga TK (2007) Organic carbon distribution, speciation, and elemental correlations within soil microaggregates: applications of STXM and NEXAFS spectroscopy. Geochim Cosmochim Acta 71(22):5439–5449

    Article  CAS  Google Scholar 

  174. Kopp C, Wisztorski M, Revel J, Mehiri M, Dani V, Capron L, Carette D, Fournier I, Massi L, Mouajjah D (2015) MALDI-MS and NanoSIMS imaging techniques to study cnidarian–dinoflagellate symbioses. Zoology 118(2):125–131

    Article  CAS  PubMed  Google Scholar 

  175. Schlüter S, Eickhorst T, Mueller CW (2018) Correlative imaging reveals holistic view of soil microenvironments. Environ Sci Technol 53(2):829–837

    Article  PubMed  CAS  Google Scholar 

  176. Lin S, Henze S, Lundgren P, Bergman B, Carpenter EJ (1998) Whole-cell immunolocalization of nitrogenase in marine diazotrophic cyanobacteria, Trichodesmium spp. Appl Environ Microbiol 64(8):3052–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Levenson RM, Borowsky AD, Angelo M (2015) Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab Investig 95(4):397–405

    Article  CAS  PubMed  Google Scholar 

  178. Singer SW, Chan CS, Hwang MH, Zemla A, VerBerkmoes NC, Hettich RL, Banfield JF, Thelen MP (2008) Characterization of cytochrome579, an unusual cytochrome isolated from an iron-oxidizing microbial community. Appl Environ Microbiol 74:4454–4462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gerard E, Guyot F, Philippot P, Lopez-Garcia P (2005) Fluorescence in situ hybridization coupled to ultra small immunogold detection to identify prokaryotic cells using transmission and scanning electron microscopy. J Microbiol Methods 63:20–28

    Article  CAS  PubMed  Google Scholar 

  180. Mayali X, Weber PK, Mabery S, Pett-Ridge J (2014) Phylogenetic patterns in the microbial response to resource availability: amino acid incorporation in San Francisco Bay. PLoS One 9(4):e95842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Mayali X, Weber PK, Pett-Ridge J (2013) Taxon-specific C:N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol 83(2):402–412

    Article  CAS  PubMed  Google Scholar 

  182. Bryson S, Li Z, Chavez F, Weber PK, Pett-Ridge J, Hettich RL, Pan C, Mayali X, Mueller RS (2017) Phylogenetically conserved resource partitioning in the coastal microbial loop. ISME J 11(12):2781–2792

    Article  PubMed  PubMed Central  Google Scholar 

  183. Smith DF, Kiss A, Leach FE, Robinson EW, Paša-Tolić L, Heeren RM (2013) High mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry for biological tissue imaging. Anal Bioanal Chem 405(18):6069–6076

    Article  CAS  PubMed  Google Scholar 

  184. Steele AV, Schwarzkopf A, McClelland JJ, Knuffman B (2017) High-brightness Cs focused ion beam from a cold-atomic-beam ion source. Nano Fut 1(1):015005

    Article  CAS  Google Scholar 

  185. Hayes JM (2004) An introduction to isotopic calculations. Woods Hole Oceanographic Institution, Woods Hole, MA, USA. https://www.whoi.edu/cms/files/jhayes/2005/9/IsoCalcs30Sept04_5183.pdf

  186. Legin AA, Schintlmeister A, Jakupec MA, Galanski M, Lichtscheidl I, Wagner M, Keppler BK (2014) NanoSIMS combined with fluorescence microscopy as a tool for subcellular imaging of isotopically labeled platinum-based anticancer drugs. Chem Sci 5(8):3135-3143

    Google Scholar 

Download references

Acknowledgments

We thank Ian Hutcheon, for his many years of mentorship, advice, and leadership of the LLNL SIMS group. We also thank our many colleagues and collaborators, with special thanks to Steve Blazewicz, Anne Dekas, Ben Jacobsen, Xavier Mayali, Erin Nuccio, Rhona Stuart, and Dagmar Woebken. Christina Ramon plays a critical role in helping to prepare and organize many of the samples we have discussed. This work was funded in part by awards from the DOE OBER Genomic Science program and LLNL Laboratory Directed Research and Development funding and performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer Pett-Ridge or Peter K. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pett-Ridge, J., Weber, P.K. (2022). NanoSIP: NanoSIMS Applications for Microbial Biology. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 2349. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1585-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1585-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1584-3

  • Online ISBN: 978-1-0716-1585-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics