Skip to main content

Using FTIR Imaging to Investigate Silk Fibroin-Based Materials

  • Protocol
  • First Online:
Fibrous Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2347))

  • 1457 Accesses

Abstract

The secondary structures of silk fibroin (SF) are critical in the determination of the mechanical properties of the animal silks. Different characterization techniques, such as X-ray diffraction, nuclear magnetic resonance, Raman spectroscopy, and Fourier transform infrared (FTIR) technique, have been applied to study the secondary structure of animal silks. Among these techniques, FTIR is most widely used as it is sensitive to all secondary structures of proteins. Especially with the development of FTIR imaging, it is now possible to image the secondary structures of proteins at the micrometer scale, so as to understand the spatial distribution of proteins and the interaction of proteins with other materials at specific locations of interest. In this chapter, we present the methods and protocols of FTIR imaging to silk protein-based materials. We primarily introduce how to set up the instruments and accessories, as well as how to choose the appropriate imaging methods and sample preparation methods according to sample morphologies. The critical protocols for data analysis are also introduced in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dicko C, Knight D, Kenney J, Vollrath F (2004) Structural conformation of spidroin in solution: a synchrotron radiation circular dichroism study. Biomacromolecules 5:758–767

    Article  CAS  Google Scholar 

  2. Li G, Shao Z, Xie X, Chen X, Wang H, Chunyu L, Yu T (2001) The natural silk spinning process. Eur J Biochem 268:6600–6606

    Article  CAS  Google Scholar 

  3. Shao Z, Vollrath F, Sirichaisit J, Young RJ (1999) Analysis of spider silk in native and supercontracted states using Raman spectroscopy. Polymer 40:2493–2500

    Article  CAS  Google Scholar 

  4. Monti P, Taddei P, Freddi G, Asakura T, Tsukada M (2001) Raman spectroscopic characterization of Bombyx mori silk fibroin: Raman spectrum of Silk I. J Raman Spectrosc 32:103–107

    Article  CAS  Google Scholar 

  5. Rousseau M-E, Lefèvre T, Beaulieu L, Asakura T, Pézolet M (2004) Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy. Biomacromolecules 5:2247–2257

    Article  CAS  Google Scholar 

  6. Fang G, Huang Y, Tang Y, Qi Z, Yao J, Shao Z, Chen X (2016) Insights into silk formation process: correlation of mechanical properties and structural evolution during artificial spinning of silk fibers. ACS Biomater Sci Eng 2:1992–2000

    Article  CAS  Google Scholar 

  7. Ling S, Qi Z, Knight DP, Shao Z, Chen X (2011) Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules 12:3344–3349

    Article  CAS  Google Scholar 

  8. Ling S, Qi Z, Shao Z, Chen X (2015) Determination of phase behaviour in all protein blend materials with multivariate FTIR imaging technique. J Mater Chem B 3:834–839. https://doi.org/10.1039/C4TB01808G

    Article  CAS  PubMed  Google Scholar 

  9. Ling S, Qi Z, Watts B, Shao Z, Chen X (2014) Structural determination of protein-based polymer blends with a promising tool: combination of FTIR and STXM spectroscopic imaging. Phys Chem Chem Phys 16:7741–7748

    Article  CAS  Google Scholar 

  10. Ling S, Qi Z, Knight D, Shao Z, Chen X (2013) FTIR imaging, a useful method for studying the compatibility of silk fibroin-based polymer blends. Polym Chem 4:5401–5406. https://doi.org/10.1039/C3PY00508A

    Article  CAS  Google Scholar 

  11. Kazarian S, Chan KLA (2010) Micro and macro-attenuated total reflection fourier transform infrared spectroscopic imaging. Appl Spectrosc 64:135–152

    Article  Google Scholar 

  12. Chan KLA, Kazarian S (2003) New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: spatial resolution and sampling versatility. Appl Spectrosc 57:381–389

    Article  CAS  Google Scholar 

  13. Zhong J, Liu Y, Ren J, Tang Y, Qi Z, Zhou X, Chen X, Shao Z, Chen M, Kaplan DL, Ling S (2019) Understanding secondary structures of silk materials via micro- and nano-infrared spectroscopies. ACS Biomater Sci Eng 5:3161–3183

    Article  CAS  Google Scholar 

  14. Baker M, Trevisan J, Bassan P, Bhargava R, Butler H, Dorling K, Fielden P, Fogarty S, Fullwood N, Heys K, Hughes C, Lasch P, Martin-Hirsch P, Effiong B, Sockalingum G, Sulé-Suso J, Strong R, Walsh M, Wood B, Martin F (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9:1771–1791

    Article  CAS  Google Scholar 

  15. Bassan P, Byrne HJ, Bonnier F, Lee J, Dumas P, Gardner P (2009) Resonant Mie scattering in infrared spectroscopy of biological materials – understanding the ‘dispersion artefact’. Analyst 134:1586–1593

    Article  CAS  Google Scholar 

  16. Bassan P, Kohler A, Martens H, Lee J, Byrne H, Dumas P, Gazi E, Brown M, Clarke N (2010) Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples. Analyst 135:268–277

    Article  CAS  Google Scholar 

  17. Bassan P, Kohler A, Martens H, Lee J, Jackson E, Lockyer N, Dumas P, Brown M, Clarke N (2010) RMieS-EMSC correction for infrared spectra of biological cells: extension using full Mie theory and GPU computing. J Biophotonics 3:609–620

    Article  CAS  Google Scholar 

  18. Ling S, Qi Z, Knight DP, Huang Y, Huang L, Zhou H, Shao Z, Chen X (2013) Insight into the structure of single Antheraea pernyi silkworm fibers using synchrotron FTIR microspectroscopy. Biomacromolecules 14:1885–1892

    Article  CAS  Google Scholar 

  19. Lasch P, Haensch W, Naumann D, Diem M (2004) Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochim Biophys Acta 1688:176–186

    Article  CAS  Google Scholar 

  20. Lasch P, Diem M, Hänsch W, Naumann D (2006) Artificial neural networks as supervised techniques for FT-IR microspectroscopic imaging. J Chemom 20:209–220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the BL01B beamline of National Center for Protein Science Shanghai (NCPSS) at Shanghai Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhao Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhong, J., Zhou, X., Ye, C., Yu, W., Tang, Y. (2021). Using FTIR Imaging to Investigate Silk Fibroin-Based Materials. In: Ling, S. (eds) Fibrous Proteins. Methods in Molecular Biology, vol 2347. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1574-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1574-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1573-7

  • Online ISBN: 978-1-0716-1574-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics