Skip to main content

Synchrotron FTIR Microspectroscopy Methods to Understand the Conformation of Single Animal Silk Fibers

  • Protocol
  • First Online:
Fibrous Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2347))

  • 1274 Accesses

Abstract

Animal silks have received extensive attention in these years due to their unique mechanical properties. The study of the structure–property relationship of animal silks is not only critical for the understanding of the design secrets of natural materials but also can inspire the engineering material designs. Fourier transform infrared spectroscopy (FTIR) has been used to study the secondary structure of animal silk, which is considered to be critical to the mechanical properties of animal silk. However, most of these characterizations are conducted on silk fiber bundles. In this respect, synchrotron FTIR microspectroscopy (S-micro FTIR) has unique advantages in characterizing single animal silks, as S-micro FTIR has significant advantages in ultrahigh brightness and high spatial resolution to characterize samples with small size. Here, we will introduce the methods for using synchrotron FTIR microspectroscopy to analyze the conformation and orientation of single animal silk fibers, which would be an efficient method to elucidate the “structure–property” relationship within animal silks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang W, Ye C, Zheng K, Zhong J, Tang Y, Fan Y, Buehler MJ, Ling S, Kaplan DL (2018) Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano 12(7):6968–6977. https://doi.org/10.1021/acsnano.8b02430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sapede D, Seydel T, Forsyth VT, Koza MM, Schweins R, Vollrath F, Riekel C (2005) Nanofibrillar structure and molecular mobility in spider dragline silk. Macromolecules 38:8447–8453

    Article  CAS  Google Scholar 

  3. Trancik JE, Czernuszka JT, Bell FI, Viney C (2006) Nanostructural features of a spider dragline silk as revealed by electron and X-ray diffraction studies. Polymer 47:5633–5642

    Article  CAS  Google Scholar 

  4. Rousseau M-E, Hernández Cruz D, West MM, Hitchcock AP, Pézolet M (2007) Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. J Am Chem Soc 129:3897–3905

    Article  CAS  Google Scholar 

  5. Seydel T, Kölln K, Krasnov I, Diddens I, Hauptmann N, Helms G, Ogurreck M, Kang S-G, Koza MM, Müller M (2007) Silkworm silk under tensile strain investigated by synchrotron X-ray diffraction and neutron spectroscopy. Macromolecules 40:1035–1042

    Article  CAS  Google Scholar 

  6. Yang Z, Liivak O, Seidel A, LaVerde G, Zax DB, Jelinski LW (2000) Supercontraction and backbone dynamics in spider silk: 13C and 2H NMR studies. J Am Chem Soc 122:9019–9025

    Article  CAS  Google Scholar 

  7. van Beek JD, Hess S, Vollrath F, Meier BH (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci 99:10266–10271

    Article  Google Scholar 

  8. Rousseau M-E, Beaulieu L, Lefèvre T, Paradis J, Asakura T, Pézolet M (2006) Characterization by Raman microspectroscopy of the strain-induced conformational transition in fibroin fibers from the silkworm Samia cynthia ricini. Biomacromolecules 7:2512–2521

    Article  CAS  Google Scholar 

  9. Sirichaisit J, Brookes VL, Young RJ, Vollrath F (2003) Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules 4:387–394

    Article  CAS  Google Scholar 

  10. Blackledge TA, Cardullo RA, Hayashi CY (2005) Polarized light microscopy, variability in spider silk diameters, and the mechanical characterization of spider silk. Invertebr Biol 124:165–173

    Article  Google Scholar 

  11. Vollrath F, Madsen B, Shao Z (2001) The effect of spinning conditions on the mechanics of a spider’s dragline silk. Proc R Soc Lond Ser B Biol Sci 268:2339–2346

    Article  CAS  Google Scholar 

  12. Hayashi CY, Lewis RV (2000) Molecular architecture and evolution of a modular spider silk protein gene. Science 287:1477–1479

    Article  CAS  Google Scholar 

  13. Mi R, Shao ZZ, Vollrath F (2019) Creating artificial rhino horns from horse hair. Sci Rep 9:16233

    Article  Google Scholar 

  14. Vollrath F, Knight DP (1999) Structure and function of the silk production pathway in the spider Nephila edulis. Int J Biol Macromol 24:243–249

    Article  CAS  Google Scholar 

  15. Dumas P, Tobin MJ (2003) A bright source for infrared microspectroscopy: synchrotron radiation. Spectrosc Eur 15:17–23

    CAS  Google Scholar 

  16. Ling S, Qi Z, Knight DP, Shao Z, Chen X (2011) Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules 12:3344–3349

    Article  CAS  Google Scholar 

  17. Ling S, Qi Z, Knight DP, Huang Y, Huang L, Zhou H, Shao Z, Chen X (2013) Insight into the structure of single Antheraea pernyi silkworm fibers using synchrotron FTIR microspectroscopy. Biomacromolecules 14:1885–1892

    Article  CAS  Google Scholar 

  18. Papadopoulos P, Sölter J, Kremer F (2007) Structure-property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy. Eur Phys J E Soft Matter 24:193–199

    Article  CAS  Google Scholar 

  19. Papadopoulos P, Ene R, Weidner I, Kremer F (2009) Similarities in the structural organization of major and minor ampullate spider silk. Macromol Rapid Commun 30:851–857

    Article  CAS  Google Scholar 

  20. Papadopoulos P, Sölter J, Kremer F (2009) Hierarchies in the structural organization of spider silk—a quantitative model. Colloid Polym Sci 287:231–236

    Article  CAS  Google Scholar 

  21. Boulet-Audet M, Lefèvre T, Buffeteau T, Pézolet M (2008) Attenuated total reflection infrared spectroscopy: an efficient technique to quantitatively determine the orientation and conformation of proteins in single silk fibers. Appl Spectrosc 62:956–962

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [grant numbers. 51973116, U1832109, 21935002], the Users with Excellence Program of Hefei Science Center CAS [grant number 2019HSC-UE003], China Postdoctoral Science Foundation [grant number 2020M681344], the starting grant of ShanghaiTech University, and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengjie Ling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ye, C., Cao, L., Ling, S. (2021). Synchrotron FTIR Microspectroscopy Methods to Understand the Conformation of Single Animal Silk Fibers. In: Ling, S. (eds) Fibrous Proteins. Methods in Molecular Biology, vol 2347. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1574-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1574-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1573-7

  • Online ISBN: 978-1-0716-1574-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics