Skip to main content

Biophysical and Structural Methods to Study the bHLHZip Region of Human c-MYC

  • Protocol
  • First Online:
The Myc Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2318))

Abstract

The C-terminal region of the c-MYC transcription factor consists of approximately 100 amino acids that in its native state does not adopt a stable structure. When this region binds to the obligatory partner MAX via a coupled folding-and-binding mechanism, it forms a basic-helix-loop-helix–leucine zipper (bHLHZip) heterodimeric complex. The C-terminal region of MYC is the target for numerous drug discovery programs for direct MYC inhibition via blocking the dimerization event and/or binding to DNA, and a proper understanding of the partially folded, dynamic nature of the heterodimeric complex is essential to these efforts. The bHLHZip motif also drives protein–protein interactions with cofactors that are crucial for both transcriptional repression and activation of MYC target genes. Targeting these interactions could potentially provide a means of developing alternative approaches to halt MYC functions; however, the molecular mechanism of these regulatory interactions is poorly understood. Herein we provide methods to produce high-quality human c-MYC C-terminal by itself and in complex MAX, and how to study them using Nuclear Magnetic Resonance spectroscopy and X-ray crystallography. Our protein expression and purification protocols have already been used to study interactions with cofactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carroll PA, Freie BW, Mathsyaraja H, Eisenman RN (2018) The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front Med 12(4):412–425. https://doi.org/10.1007/s11684-018-0650-z

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nepal RM, Martin A (2019) Unmasking the mysteries of MYC. J Immunol 202(9):2517–2518. https://doi.org/10.4049/jimmunol.1900186

    Article  CAS  PubMed  Google Scholar 

  3. Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L, Littlewood TD, Evan GI (2017) Myc cooperates with Ras by programming inflammation and immune suppression. Cell 171(6):1301–1315. https://doi.org/10.1016/j.cell.2017.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hann SR (2014) MYC cofactors: molecular switches controlling diverse biological outcomes. Cold Spring Harb Perspect Med 4(9):a014399. https://doi.org/10.1101/cshperspect.a014399

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gabay M, Li Y, Felsher DW (2014) MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med 4(6):a014241. https://doi.org/10.1101/cshperspect.a014241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35. https://doi.org/10.1016/j.cell.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI, Soucek L (2011) Endogenous Myc maintains the tumor microenvironment. Genes Dev 25(9):907–916. https://doi.org/10.1101/gad.2038411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolfram JA, Lesnefsky EJ, Hoit BD, Smith MA, Lee H-g (2011) Therapeutic potential of c-Myc inhibition in the treatment of hypertrophic cardiomyopathy. Ther Adv Chronic Dis 2(2):133–144. https://doi.org/10.1177/2040622310393059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McKeown MR, Bradner JE (2014) Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med 4(10):a014266. https://doi.org/10.1101/cshperspect.a014266

    Article  PubMed  PubMed Central  Google Scholar 

  10. Allen-Petersen BL, Sears RC (2019) Mission possible: advances in MYC therapeutic targeting in cancer. BioDrugs 33(5):539–553. https://doi.org/10.1007/s40259-019-00370-5

    Article  PubMed  PubMed Central  Google Scholar 

  11. Whitfield JR, Beaulieu M-E, Soucek L (2017) Strategies to inhibit Myc and their clinical applicability. Front Cell Dev Biol 5:10. https://doi.org/10.3389/fcell.2017.00010

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zinzalla G (2016) Targeting MYC: is it getting any easier? Future Med Chem 8(16):1899–1902. https://doi.org/10.4155/fmc-2016-0119

    Article  CAS  PubMed  Google Scholar 

  13. Nair SK, Burley SK (2003) X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112(2):193–205

    Article  CAS  Google Scholar 

  14. Sammak S, Hamdani N, Gorrec F, Allen MD, Freund SMV, Bycroft M, Zinzalla G (2019) Crystal structures and nuclear magnetic resonance studies of the Apo form of the c-MYC:MAX bHLHZip complex reveal a helical basic region in the absence of DNA. Biochemistry 58(29):3144–3154. https://doi.org/10.1021/acs.biochem.9b00296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sabò A, Amati B (2014) Genome recognition by MYC. Cold Spring Harb Perspect Med 4(2):a014191. https://doi.org/10.1101/cshperspect.a014191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lorenzin F, Benary U, Baluapuri A, Walz S, Jung LA, von Eyss B, Kisker C, Wolf J, Eilers M, Wolf E (2016) Different promoter affinities account for specificity in MYC-dependent gene regulation. eLife 5:e15161. https://doi.org/10.7554/eLife.15161

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tu WB, Helander S, Pilstal R, Hickman KA, Lourenco C, Jurisica I, Raught B, Wallner B, Sunnerhagen M, Penn LZ (2015) Myc and its interactors take shape. Biochim Biophys Acta 1849(5):469–483. https://doi.org/10.1016/j.bbagrm.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  18. Vervoorts J, Luscher-Firzlaff J, Luscher B (2006) The ins and outs of MYC regulation by posttranslational mechanisms. J Biol Chem 281(46):34725–34729. https://doi.org/10.1074/jbc.R600017200

    Article  CAS  PubMed  Google Scholar 

  19. Sammak S, Allen MD, Hamdani N, Bycroft M, Zinzalla G (2018) The structure of INI1/hSNF5 RPT1 and its interactions with the c-MYC:MAX heterodimer provide insights into the interplay between MYC and the SWI/SNF chromatin remodeling complex. FEBS J 285:4165–4180. https://doi.org/10.1111/febs.14660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T, Syvaoja J, Saluz HP, Haenel F, Eilers M (2002) Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 10(3):509–521. https://doi.org/10.1016/s1097-2765(02)00633-0

    Article  CAS  PubMed  Google Scholar 

  21. Chen H, Venkat S, McGuire P, Gan Q, Fan C (2018) Recent development of genetic code expansion for posttranslational modification studies. Molecules 23(7):1662. https://doi.org/10.3390/molecules23071662

    Article  CAS  PubMed Central  Google Scholar 

  22. Castell A, Yan Q, Fawkner K, Hydbring P, Zhang F, Verschut V, Franco M, Zakaria SM, Bazzar W, Goodwin J, Zinzalla G, Larsson L-G (2018) A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci Rep 8(1):1–17. https://doi.org/10.1038/s41598-018-28107-4

    Article  CAS  Google Scholar 

  23. Tan S, Kern RC, Selleck W (2005) The pST44 polycistronic expression system for producing protein complexes in Escherichia coli. Protein Expr Purif 40(2):385–395. https://doi.org/10.1016/j.pep.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  24. Selleck W, Tan S (2008) Recombinant protein complex expression in E. coli. Curr Protoc Protein Sci Chapter 5:Unit 5.21. https://doi.org/10.1002/0471140864.ps0521s52

    Article  PubMed  Google Scholar 

  25. https://www2.mrc-lmb.cam.ac.uk/groups/JYL/WWWrobots/robot-overview.html

  26. Gorrec F, Zinzalla G (2018) The MORPHEUS III protein crystallization screen: at the frontier of drug discovery. https://www.iucr.org/news/newsletter/volume-26/number-1/the-morpheus-iii-crystallization-screen-at-the-frontier-of-drug-discovery

  27. Jung Y-S, Zweckstetter M (2004) Mars - robust automatic backbone assignment of proteins. J Biomol NMR 30(1):11–23. https://doi.org/10.1023/B:JNMR.0000042954.99056.ad

    Article  CAS  PubMed  Google Scholar 

  28. Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49(1):9–15. https://doi.org/10.1007/s10858-010-9461-5

    Article  CAS  PubMed  Google Scholar 

  29. Hu J, Banerjee A, Goss DJ (2005) Assembly of b/HLH/z proteins c-Myc, Max, and Mad1 with cognate DNA: importance of protein-protein and protein-DNA interactions. Biochemistry 44(35):11855–11863. https://doi.org/10.1021/bi050206i

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Zinzalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zinzalla, G. (2021). Biophysical and Structural Methods to Study the bHLHZip Region of Human c-MYC. In: Soucek, L., Whitfield, J. (eds) The Myc Gene. Methods in Molecular Biology, vol 2318. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1476-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1476-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1475-4

  • Online ISBN: 978-1-0716-1476-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics