Skip to main content

Structure-Indicated LC-MS/MS Bioanalysis of Therapeutic Antibodies

  • Protocol
  • First Online:
Therapeutic Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2313))

Abstract

Monoclonal antibodies bind to Protein A/G resin with 100 nm-diameter pores, which orients the Fab toward the reaction solution. Then, they can be proteolyzed using trypsin immobilized on the surface of 200 nm-diameter nanoparticles. The difference between the two particle diameters allows Fab-selective proteolysis by limiting trypsin access to the antibody substrate. The specific signature peptide of monoclonal antibody is collected, which comprises the complementarity-determining regions (CDRs). Excess trypsin protease and peptide fragments from common sequences in Fc that inhibit the analysis can then be separated and removed. The resulting peptide samples are separated through high performance liquid chromatography on a 20 nm-diameter pore-size reversed-phase C18 column. These are then sequentially ionized with an electrospray interface and subjected to mass spectrometry (MS). In MS, peptide ions are trapped and fragment ions are generated by the collision-induced dissociation with argon gas. These are detected with multiple reaction monitoring measurements to perform a highly sensitive and accurate quantitative analysis.

By focusing on various physicochemical features at each analytical scene, such as characteristic structure and orientation of antibody, control of trypsin reaction field, carry-over on HPLC column, ionization suppression effect from endogenous proteins, and detection of amino acid sequence specificity of antibody, we optimized the overall conditions from the sample processing up to MS detection and developed analytical validation and clinical application of many therapeutic antibodies using our Fab-selective proteolysis technology that is based on the structure-indicated approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duggan JX, Vazvaei F, Jenkins R (2015) Bioanalytical method validation considerations for LC-MS/MS assays of therapeutic proteins. Bioanalysis 7(11):1389–1395

    Article  CAS  Google Scholar 

  2. Vande Casteele N, Herfarth H, Katz J, Falck-Ytter Y, Singh S (2017) American Gastroenterological Association Institute technical review on the role of therapeutic drug monitoring in the management of inflammatory bowel diseases. Gastroenterology 153(3):835–857. e836

    Article  Google Scholar 

  3. Iwamoto N, Shimada T (2019) Regulated LC-MS/MS bioanalysis technology for therapeutic antibodies and fc-fusion proteins using structure-indicated approach. Drug Metab Pharmacokinet 34(1):19–24

    Article  CAS  Google Scholar 

  4. Iwamoto N, Shimada T (2018) Recent advances in mass spectrometry-based approaches for proteomics and biologics: great contribution for developing therapeutic antibodies. Pharmacol Ther 185:147–154

    Article  CAS  Google Scholar 

  5. Li H, Ortiz R, Tran L et al (2012) General LC-MS/MS method approach to quantify therapeutic monoclonal antibodies using a common whole antibody internal standard with application to preclinical studies. Anal Chem 84(3):1267–1273

    Article  CAS  Google Scholar 

  6. Roman J, Qiu J, Dornadula G et al (2011) Application of miniaturized immunoassays to discovery pharmacokinetic bioanalysis. J Pharmacol Toxicol Methods 63(3):227–235

    Article  CAS  Google Scholar 

  7. Kirresh T, Tuteja S, Russo D et al (2017) Development and validation of a liquid chromatography-mass spectrometric assay for simultaneous determination of tacrolimus and 13-O-desmethyl tacrolimus in rat kidney tissue. J Pharm Biomed Anal 136:32–37

    Article  CAS  Google Scholar 

  8. Shibata K, Naito T, Okamura J et al (2017) Simple and rapid LC-MS/MS method for the absolute determination of cetuximab in human serum using an immobilized trypsin. J Pharm Biomed Anal 146:266–272

    Article  CAS  Google Scholar 

  9. Jenkins R, Duggan JX, Aubry AF et al (2015) Recommendations for validation of LC-MS/MS bioanalytical methods for protein biotherapeutics. AAPS J 17(1):1–16

    Article  CAS  Google Scholar 

  10. He J, Su D, Ng C et al (2017) High-resolution accurate-mass mass spectrometry enabling in-depth characterization of in vivo biotransformations for intact antibody-drug conjugates. Anal Chem 89(10):5476–5483

    Article  CAS  Google Scholar 

  11. Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1(2):118–129

    Article  CAS  Google Scholar 

  12. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287

    Article  CAS  Google Scholar 

  13. Lee SS, Bindokas VP, Kron SJ (2019) Multiplex three-dimensional mapping of macromolecular drug distribution in the tumor microenvironment. Mol Cancer Ther 18(1):213–226

    Article  CAS  Google Scholar 

  14. Meroni PL, Valentini G, Ayala F et al (2015) New strategies to address the pharmacodynamics and pharmacokinetics of tumor necrosis factor (TNF) inhibitors: a systematic analysis. Autoimmun Rev 14(9):812–829

    Article  CAS  Google Scholar 

  15. Iwamoto N, Hamada A, Shimada T (2018) Antibody drug quantitation in coexistence with anti-drug antibodies on nSMOL bioanalysis. Anal Biochem 540-541:30–37

    Article  CAS  Google Scholar 

  16. Riaz N, Havel JJ, Makarov V et al (2017) Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell 171(4):934–949. e916

    Article  CAS  Google Scholar 

  17. Ray A, Williams MA, Meek SM et al (2016) A phase I study of intratumoral ipilimumab and interleukin-2 in patients with advanced melanoma. Oncotarget 7(39):64390–64399

    Article  Google Scholar 

  18. Mulleman D, Meric JC, Paintaud G et al (2009) Infliximab concentration monitoring improves the control of disease activity in rheumatoid arthritis. Arthritis Res Ther 11(6):R178

    Article  Google Scholar 

  19. Force J, Leal JHS, McArthur HL (2019) Checkpoint blockade strategies in the treatment of breast cancer: where we are and where we are heading. Curr Treat Options in Oncol 20(4):35

    Article  Google Scholar 

  20. Hassel JC, Heinzerling L, Aberle J et al (2017) Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): evaluation and management of adverse drug reactions. Cancer Treat Rev 57:36–49

    Article  CAS  Google Scholar 

  21. Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132(2):211–250

    Article  CAS  Google Scholar 

  22. Takai T (2002) Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2(8):580–592

    Article  CAS  Google Scholar 

  23. Iwamoto N, Shimada T, Umino Y et al (2014) Selective detection of complementarity-determining regions of monoclonal antibody by limiting protease access to the substrate: nano-surface and molecular-orientation limited proteolysis. Analyst 139(3):576–580

    Article  CAS  Google Scholar 

  24. Iwamoto N, Umino Y, Aoki C et al (2016) Fully validated LCMS bioanalysis of bevacizumab in human plasma using nano-surface and molecular-orientation limited (nSMOL) proteolysis. Drug Metab Pharmacokinet 31(1):46–50

    Article  CAS  Google Scholar 

  25. Iwamoto N, Shimada T, Terakado H, Hamada A (2016) Validated LC-MS/MS analysis of immune checkpoint inhibitor Nivolumab in human plasma using a Fab peptide-selective quantitation method: nano-surface and molecular-orientation limited (nSMOL) proteolysis. J Chromatogr B Analyt Technol Biomed Life Sci 1023–1024:9–16

    Article  Google Scholar 

  26. Iwamoto N, Yokoyama K, Takanashi M et al (2018) Verification between original and biosimilar therapeutic antibody infliximab using nSMOL coupled LC-MS bioanalysis in human serum. Curr Pharm Biotechnol 19(6):495–505

    Article  CAS  Google Scholar 

  27. Iwamoto N, Yokoyama K, Takanashi M et al (2018) Application of nSMOL coupled with LC-MS bioanalysis for monitoring the Fc-fusion biopharmaceuticals Etanercept and Abatacept in human serum. Pharmacol Res Perspect 6(4):e00422

    Article  Google Scholar 

  28. Iwamoto N, Takanashi M, Yokoyama K et al (2019) Multiplexed monitoring of therapeutic antibodies for inflammatory diseases using Fab-selective proteolysis nSMOL coupled with LC-MS. J Immunol Methods 472:44–54

    Article  CAS  Google Scholar 

  29. Iwamoto N, Yonezawa A, Matsubara K, Shimada T (2019) Acceleration of nano-surface and molecular-orientation limited (nSMOL) proteolysis with acidified reduction pretreatment for quantification of tocilizumab. J Pharm Biomed Anal 164:467–474

    Article  CAS  Google Scholar 

Download references

Acknowledgments

nSMOL development and clinical application are part of the collaboration results with Akinobu Hamada, Ph.D. and Hitoshi Nakagama, M.D., Ph.D. of National Cancer Center (Tokyo, Japan), Atsushi Yonezawa, Ph.D. and Kazuo Matsubara, Ph.D. of Kyoto University Hospital (Kyoto, Japan), Bernard Fox, Ph.D., William Redmond, Ph.D., Eric Tran, Ph.D., Brian Piening, Ph.D., Yoshinobu Koguchi, M.D., Ph.D., and Walter Urba, M.D., Ph.D. of Providence Cancer Institute (Portland, Oregon), Naoe Yamane, Ph.D. of CMIC (Tokyo, Japan), and Ms. Misato Hara and Mr. Naohiro Hanyu of Tamagawa Seiki (Nagano, Japan). We would sincerely express our deeply appreciation to this collaboration and their colleagues for significant support and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Shimada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Iwamoto, N., Shimada, T. (2022). Structure-Indicated LC-MS/MS Bioanalysis of Therapeutic Antibodies. In: Houen, G. (eds) Therapeutic Antibodies. Methods in Molecular Biology, vol 2313. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1450-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1450-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1449-5

  • Online ISBN: 978-1-0716-1450-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics