Skip to main content
Log in

Quantitative LC/ESI-SRM/MS of antibody biopharmaceuticals: use of a homologous antibody as an internal standard and three-step method development

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Monoclonal antibody-based therapeutic agents (antibody drugs) have attracted considerable attention as a new type of drug. Concomitantly, the use of quantitative approaches for characterizing antibody drugs, such as liquid chromatography (LC)-mass spectrometry (MS), has increased. Generally, selective quantification of antibody drugs is done using unique peptides from variable regions (V H and V L) as surrogate peptides. Further, numerous internal standards (ISs) such as stable isotope-labeled (SIL)-intact proteins and SIL-surrogate peptides are used. However, developing LC-MS methodology for characterizing antibody drugs is time-consuming and costly. Therefore, LC-MS is difficult to apply for this purpose, particularly during the drug discovery stage when numerous candidates must be evaluated. Here, we demonstrate an efficient approach to developing a quantitative LC/electrospray ionization (ESI)-selected reaction monitoring (SRM)/MS method for characterizing antibody drugs. The approach consists of the following features: (i) standard peptides or SIL-IS are not required; (ii) a peptide from the homologous monoclonal antibody serves as an IS; (iii) method development is monitored using a spiked plasma sample and one quantitative MS analysis; and (iv) three predicted SRM assays are performed to optimize quantitative SRM conditions such as transition, collision energy, and declustering potential values. Using this strategy, we developed quantitative SRM methods for infliximab, alemtuzumab, and bevacizumab with sufficient precision (<20%)/accuracy (<±20%) for use in the drug discovery stage. We have also demonstrated that choosing a higher homologous peptide pair (from analyte mAb/IS mAb) is necessary to obtain the sufficient precision and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CDR:

Complementarity-determining region

CE:

Collision energy

CXP:

Collision cell exit potential

DP:

Declustering potential

D-PBS:

Dulbecco’s phosphate-buffered saline

DTT:

Dithiothreitol

ESI:

Electrospray ionization

EP:

Entrance potential

IAA:

Iodoacetamide

IS:

Internal standard

LBA:

Ligand binding assay

LC:

Liquid chromatography

mAb:

Monoclonal antibody

MS:

Mass spectrometry

pSRM:

Predicted SRM

QC:

Quality control

SRM:

Selected reaction monitoring

SIL:

Stable isotope-labeled

V H :

Heavy-chain variable region

V L :

Light-chain variable region

References

  1. Buss NA, Henderson SJ, McFarlane M, Shenton JM, de Haan L. Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol. 2012;12:615–22. doi:10.1016/j.coph.2012.08.001.

    Article  CAS  Google Scholar 

  2. Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad SciUSA. 1996;93:5512–6. (http://www.pnas.org/content/93/11/5512.full.pdf)

    Article  CAS  Google Scholar 

  3. Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol. 1996;26:690–6. doi:10.1002/eji.1830260327.

    Article  CAS  Google Scholar 

  4. Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE. Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology. 1996;89:573–8. doi:10.1046/j.1365-2567.1996.d01-775.x.

    Article  CAS  Google Scholar 

  5. Philippidis A. The top 25 best-selling drugs of 2014, Genetic Engineering & Biotechnology News, Feb 23, 2015. (http://www.genengnews.com/keywordsandtools/print/3/37387/).

  6. DiMasi JA, Feldman L, Seckler A, Wilson A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther. 2010;87:272–7. doi:10.1038/clpt.2009.295.

    Article  CAS  Google Scholar 

  7. Li F, Fast DD, Michael S. Absolute quantitation of protein therapeutics in biological matrices by enzymatic digestion and LC-MS. Bioanalysis. 2011;3:2459–80. doi:10.4155/bio.11.237.

    Article  CAS  Google Scholar 

  8. van den Broek I, Niessen WM, van Dongen WD. Bioanalytical LC-MS/MS of protein-based biopharmaceuticals. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;929:161–79. doi:10.1016/j.jchromb.2013.04.030.

    Article  Google Scholar 

  9. An B, Zhang M, Qu J. Toward sensitive and accurate analysis of antibody biotherapeutics by liquid chromatography coupled with mass spectrometry. Drug Metab Dispos. 2014;42:1858–66. doi:10.1124/dmd.114.058917.

    Article  Google Scholar 

  10. Hoofnagle AN, Wener MH. The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods. 2009;347:3–11. doi:10.1016/j.jim.2009.06.003.

    Article  CAS  Google Scholar 

  11. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB. Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem. 1985;57:675–9. doi:10.1021/ac00280a023.

    Article  CAS  Google Scholar 

  12. Li H, Ortiz R, Tran LT, Salimi-Moosavi H, Malella J, James CA, et al. Simultaneous analysis of multiple monoclonal antibody biotherapeutics by LC-MS/MS method in rat plasma following cassette-dosing. AAPS J. 2013;15:337–46. doi:10.1208/s12248-012-9435-5.

    Article  CAS  Google Scholar 

  13. Jiang H, Zeng J, Titsch C, Voronin K, Akinsanya B, Luo L, et al. Fully validated LC-MS/MS assay for the simultaneous quantitation of coadministered therapeutic antibodies in cynomolgus monkey serum. Anal Chem. 2013;15:9859–67. doi:10.1021/ac402420v.

    Article  Google Scholar 

  14. Furlong MT, Ouyang Z, Wu S, Tamura J, Olah T, Tymiak A, et al. A universal surrogate peptide to enable LC-MS/MS bioanalysis of a diversity of human monoclonal antibody and human Fc-fusion protein drug candidates in pre-clinical animal studies. Biomed Chromatogr. 2012;26:1024–32. doi:10.1002/bmc.2759.

    CAS  Google Scholar 

  15. Furlong MT, Titsch C, Xu W, Jiang H, Jemal M, Zeng J. An exploratory universal LC-MS/MS assay for bioanalysis of hinge region-stabilized human IgG4 mAbs in clinical studies. Bioanalysis. 2014;6:1747–58. doi:10.4155/bio.14.64.

    Article  CAS  Google Scholar 

  16. Furlong MT, Zhao S, Mylott W, Jenkins R, Gao M, Hegde V, et al. Dual universal peptide approach to bioanalysis of human monoclonal antibody protein drug candidates in animal studies. Bioanalysis. 2013;5:1363–76. doi:10.4155/bio.13.55.

    Article  CAS  Google Scholar 

  17. Zhang Q, Spellman DS, Song Y, Choi B, Hatcher NG, Tomazela D, et al. Generic automated method for liquid chromatography-multiple reaction monitoring mass spectrometry based monoclonal antibody quantitation for preclinical pharmacokinetic studies. Anal Chem. 2014;86:8776–84. doi:10.1021/ac5019827.

    Article  CAS  Google Scholar 

  18. Dubois M, Fenaille F, Clement G, Lechmann M, Tabet JC, Ezan E, et al. Immunopurification and mass spectrometric quantification of the active form of a chimeric therapeutic antibody in human serum. Anal Chem. 2008;80:1737–445. doi:10.1021/ac7021234.

    Article  CAS  Google Scholar 

  19. Fernández Ocaña M, James IT, Kabir M, Grace C, Yuan G, Martin SW, et al. Clinical pharmacokinetic assessment of an anti-MAdCAM monoclonal antibody therapeutic by LC-MS/MS. Anal Chem. 2012;84:5959–67. doi:10.1021/ac300600f.

    Article  Google Scholar 

  20. Becker JO, Hoofnagle AN. Replacing immunoassays with tryptic digestion-peptide immunoaffinity enrichment and LC-MS/MS. Bioanalysis. 2012;4:281–90. doi:10.4155/bio.11.319.

    Article  CAS  Google Scholar 

  21. Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, et al. Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res. 2008;25:1469–83. doi:10.1007/s11095-008-9532-4.

    Article  CAS  Google Scholar 

  22. Hagman C, Ricke D, Ewert S, Bek S, Falchetto R, Bitsch F, et al. Anal Chem. 2008;80:1290–6. doi:10.1021/ac702115b.

    Article  CAS  Google Scholar 

  23. Heudi O, Barteau S, Zimmer D, Schmidt J, Bill K, Lehmann N, et al. Towards absolute quantification of therapeutic monoclonal antibody in serum by LC-MS/MS using isotope-labeled antibody standard and protein cleavage isotope dilution mass spectrometry. Anal Chem. 2008;80:4200–7. doi:10.1021/ac800205s.

    Article  CAS  Google Scholar 

  24. Li H, Ortiz R, Tran L, Hall M, Spahr C, Walker K, et al. General LC-MS/MS method approach to quantify therapeutic monoclonal antibodies using a common whole antibody internal standard with application to preclinical studies. Anal Chem. 2012;84:1267–73. doi:10.1021/ac202792n.

    Article  CAS  Google Scholar 

  25. Nouri-Nigjeh E, Zhang M, Ji T, Yu H, An B, Duan X, et al. Effects of calibration approaches on the accuracy for LC-MS targeted quantification of therapeutic protein. Anal Chem. 2014;86:3575–84. doi:10.1021/ac5001477.

    Article  CAS  Google Scholar 

  26. Liu G, Ji QC, Dodge R, Sun H, Shuster D, Zhao Q, et al. Liquid chromatography coupled with tandem mass spectrometry for the bioanalysis of proteins in drug development: practical considerations in assay development and validation. J Chromatogr A. 2013;1284:155–62. doi:10.1016/j.chroma.2013.02.016.

    Article  CAS  Google Scholar 

  27. Yang Z, Hayes M, Fang X, Daley MP, Ettenberg S, Tse FL. LC-MS/MS approach for quantification of therapeutic proteins in plasma using a protein internal standard and 2D-solid-phase extraction cleanup. Anal Chem. 2007;79:9294–301. doi:10.1021/ac0712502.

    Article  CAS  Google Scholar 

  28. Lame M, Yang H, Naughton S, Chambers E. An intact murine monoclonal antibody for use as a generic internal standard and workflow check standard in protein bioanalysis studies. Waters Co., Milford, MA, USA, Waters application note 720005543 ( http://www.waters.com/webassets/cms/library/docs/720005543en.pdf).

  29. Jenkins R, Duggan JX, Aubry AF, Zeng J, Lee JW, Cojocaru L, et al. Recommendations for validation of LC-MS/MS bioanalytical methods for protein biotherapeutics. AAPS J. 2015;17:1–16. doi:10.1124/dmd.114.058917.

    Article  CAS  Google Scholar 

  30. Lu Q, Zheng X, McIntosh T, Davis H, Nemeth JF, Pendley C, et al. Development of different analysis platforms with LC-MS for pharmacokinetic studies of protein drugs. Anal Chem. 2009;81:8715–23. doi:10.1021/ac901991x.

    Article  CAS  Google Scholar 

  31. Yuan L, Arnold ME, Aubry AF, Ji QC. Simple and efficient digestion of a monoclonal antibody in serum using pellet digestion: comparison with traditional digestion methods in LC-MS/MS bioanalysis. Bioanalysis. 2012;4:2887–96. doi:10.4155/bio.12.284.

    Article  CAS  Google Scholar 

  32. Yuan L, Aubry AF, Arnold ME, Ji QC. Systematic investigation of orthogonal SPE sample preparation for the LC-MS/MS bioanalysis of a monoclonal antibody after pellet digestion. Bioanalysis. 2013;5:2379–91. doi:10.4155/bio.13.224.

    Article  CAS  Google Scholar 

  33. Osaki F, Goto T, Lee SH, Oe T. Predicted multiple selected reaction monitoring to screen activated drug-mediated modifications on human serum albumin. Anal Biochem. 2014;449:59–67. doi:10.1016/j.ab.2013.12.016.

    Article  CAS  Google Scholar 

  34. McGinley M, Jarrett D, Layne J, Chitty M, Farkas T. Optimising core-shell UHPLC columns for improving protein and peptide separations. Chromatography Today 4 2011;33–36. (http://www.chromatographytoday.com/articles/hplc-uhplc/31/michael_mcginley_deborah_jarrett_jeff_layne_mike_chitty_and_tivadar_farkas/optimising_core-shell_uhplc_columns_for_improving_protein_and_peptide_separations/1099/).

  35. Duan X, Abuqayyas L, Dai L, Balthasar JP, Qu J. High-throughput method development for sensitive, accurate, and reproducible quantification of therapeutic monoclonal antibodies in tissues using orthogonal array optimization and nano liquid chromatography/selected reaction monitoring mass spectrometry. Anal Chem. 2012;84:4373–82. doi:10.1021/ac2034166.

    Article  CAS  Google Scholar 

  36. Duan X, Dai L, Chen SC, Balthasar JP, Qu J. Nano-scale liquid chromatography/mass spectrometry and on-the-fly orthogonal array optimization for quantification of therapeutic monoclonal antibodies and the application in preclinical analysis. J Chromatogr A. 2012;1251:63–73. doi:10.1016/j.chroma.2012.06.007.

    Article  CAS  Google Scholar 

  37. Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10:345–52. doi:10.1038/nnnnn2747.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Aiji Miyashita, Masako Furutani, Fujiko Takamura, and Dr. Tetsu Saito of Astellas Pharma Inc. for their valuable scientific discussions and Masamichi Yuda and Masashi Kawasaki of Astellas Pharma Inc. for providing antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Oe.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 5012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osaki, F., Tabata, K. & Oe, T. Quantitative LC/ESI-SRM/MS of antibody biopharmaceuticals: use of a homologous antibody as an internal standard and three-step method development. Anal Bioanal Chem 409, 5523–5532 (2017). https://doi.org/10.1007/s00216-017-0488-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0488-2

Keywords

Navigation