Skip to main content

Constructing a Smartphone-Controlled Semiautomatic Theranostic System for Glucose Homeostasis in Diabetic Mice

  • Protocol
  • First Online:
Mammalian Cell Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2312))

  • 1856 Accesses

Abstract

With the development of mobile communication technology, smartphones have been used in point-of-care technologies (POCTs) as an important part of telemedicine. Using a multidisciplinary design principle coupling electrical engineering, software development, synthetic biology, and optogenetics, the investigators developed a smartphone-controlled semiautomatic theranostic system that regulates blood glucose homeostasis in diabetic mice in an ultraremote-control manner. The present chapter describes how the investigators tailor-designed the implant architecture “HydrogeLED,” which is capable of coharboring a designer-cell-carrying alginate hydrogel and wirelessly powered far-red light LEDs. Using diabetes mellitus as a model disease, the in vivo expression of insulin or human glucagon-like peptide 1 (shGLP-1) from HydrogeLED implants could be controlled not only by pre-set ECNU-TeleMed programs, but also by a custom-engineered Bluetooth-active glucometer in a semiautomatic and glycemia-dependent manner. As a result, blood glucose homeostasis was semiautomatically maintained in diabetic mice through the smartphone-controlled semiautomatic theranostic system. By combining digital signals with optogenetically engineered cells, the present study provides a new method for the integrated diagnosis and treatment of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang J, Li Y, Li H et al (2018) GDF11 improves Angiogenic function of EPCs in diabetic limb ischemia. Diabetes 67(10):2084–2095

    Article  CAS  Google Scholar 

  2. Saeedi P et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes research and clinical practice 157:107843

    Google Scholar 

  3. American Diabetes Association (2020) 2. Classification and diagnosis of diabetes: standards of medical Care in Diabetes—2020. Diabetes Care 43(Supplement 1):S14–S31

    Google Scholar 

  4. Yang X, Ongusaha PP, Miles PD et al (2008) Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451(7181):964–969

    Article  CAS  Google Scholar 

  5. Langlet F, Haeusler RA, Lindén D et al (2017) Selective inhibition of FOXO1 activator/repressor balance modulates hepatic glucose handling. Cell 171(4):824–835.e818

    Article  CAS  Google Scholar 

  6. Kernan WN, Viscoli CM, Furie KL et al (2016) Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med 374(14):1321–1331

    Article  CAS  Google Scholar 

  7. Gubitosi-Klug RA, Braffett BH, White NH et al (2017) Risk of severe hypoglycemia in type 1 diabetes over 30 years of follow-up in the DCCT/EDIC study. Diabetes Care 40(8):1010–1016

    Article  CAS  Google Scholar 

  8. Cravalho CK, Meyers AG, Mabundo L et al (2019) 1326-P: metformin increases GLP-1 concentrations and improves glycemia in youth with Type 2 diabetes. Diabetes 68(Supplement 1):1326

    Article  Google Scholar 

  9. Yamaguchi T, Sato H, Kato-Itoh M et al (2017) Interspecies organogenesis generates autologous functional islets. Nature 542(7640):191–196

    Article  CAS  Google Scholar 

  10. Zhu Z, Li QV, Lee K et al (2016) Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes. Cell Stem Cell 18(6):755–768

    Article  CAS  Google Scholar 

  11. Zhou Q, Melton DA (2018) Pancreas regeneration. Nature 557(7705):351–358

    Article  CAS  Google Scholar 

  12. Smalley E (2016) Medtronic automated insulin delivery device gets FDA nod. Nat Biotechnol 34(12):1220

    Article  CAS  Google Scholar 

  13. Knebel T, Neumiller JJ (2019) Medtronic MiniMed 670G hybrid closed-loop system. Clin Diabetes 37(1):94–95

    Article  Google Scholar 

  14. Saunders A, Messer LH, Forlenza GP (2019) MiniMed 670G hybrid closed loop artificial pancreas system for the treatment of type 1 diabetes mellitus: overview of its safety and efficacy. Expert Rev Med Devices 16(10):845–853

    Article  CAS  Google Scholar 

  15. Trevitt S, Simpson S, Wood A (2016) Artificial pancreas device Systems for the Closed-Loop Control of type 1 diabetes: what systems are in development? J Diabetes Sci Technol 10(3):714–723

    Article  Google Scholar 

  16. Quesada-González D, Merkoçi A (2017) Mobile phone-based biosensing: an emerging “diagnostic and communication” technology. Biosens Bioelectron 92:549–562

    Article  Google Scholar 

  17. Wang P, Kricka LJ (2018) Current and emerging trends in point-of-care technology and strategies for clinical validation and implementation. Clin Chem 64(10):1439–1452

    Article  CAS  Google Scholar 

  18. Sharp L, Farrance I, Greaves RF (2016) The application of glucose point of care testing in three metropolitan hospitals. Pathology 48(1):51–59

    Article  Google Scholar 

  19. Shao J, Xue S, Yu G et al (2017) Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci Transl Med 9(387):eaal2298

    Article  Google Scholar 

  20. Ye H, Daoud-El Baba M, Peng RW et al (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science (New York, NY) 332(6037):1565–1568

    Article  CAS  Google Scholar 

  21. Shao J, Wang M, Yu G et al (2018) Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc Natl Acad Sci U S A 115(29):E6722–E6730

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Ningzi Guan for revising the manuscript. This work was financially supported by the grants from the National Key R&D Program of China, Synthetic Biology Research (no. 2019YFA0904500), the National Natural Science Foundation of China (NSFC: no. 31971346, no. 31861143016), the Science and Technology Commission of Shanghai Municipality (no. 18JC1411000) to H.Y. Materials availability: All genetic components related to this paper are available with a material transfer agreement and can be requested from H.Y. (hfye@bio.ecnu.edu.cn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, G., Yu, Y., Ye, H. (2021). Constructing a Smartphone-Controlled Semiautomatic Theranostic System for Glucose Homeostasis in Diabetic Mice. In: Kojima, R. (eds) Mammalian Cell Engineering. Methods in Molecular Biology, vol 2312. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1441-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1441-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1440-2

  • Online ISBN: 978-1-0716-1441-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics