Skip to main content

Transient Transfection and Expression of Eukaryotic Membrane Proteins in Expi293F Cells and Their Screening on a Small Scale: Application for Structural Studies

  • Protocol
  • First Online:
Structural Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2305))

Abstract

Cancers, neurodegenerative and infectious diseases remain some of the leading causes of deaths worldwide. The structure-guided drug design is essential to advance drug development for these important diseases. One of the key challenges in the structure determination workflow is the production of eukaryotic membrane proteins (drug targets) of high quality. A number of expression systems have been developed for the production of eukaryotic membrane proteins. In this chapter, an optimized detailed protocol for transient transfection and expression of eukaryotic membrane proteins in Expi293F cells is presented. Testing expression and purification on a small scale allow optimizing conditions for sample preparation for downstream structural (cryo-EM) elucidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lyumkis D (2019) Challenges and opportunities in cryo-EM single-particle analysis. J Biol Chem 294:5181–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rivera-Calzada A, Carroni M (2019) Editorial: technical advances in cryo-electron microscopy. Front Mol Biosci 6:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cuozzo JW, Soutter HH (2014) Overview of recent progress in protein-expression technologies for small-molecule screening. J Biomol Screen 19:1000–1013

    Article  CAS  PubMed  Google Scholar 

  4. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Almen MS, Nordstrom Fredriksson R et al (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rask-Andersen M, Masuram S, Schioth HB (2014) The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu Rev Pharmacol Toxicol 54:9–26

    Article  CAS  PubMed  Google Scholar 

  7. Yin H, Flynn AD (2016) Drugging membrane protein interactions. Annu Rev Biomed Eng 18:51–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santos R, Ursu O, Gaulton A et al (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34

    Article  CAS  PubMed  Google Scholar 

  9. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681

    Article  CAS  PubMed  Google Scholar 

  10. Lee CH, MacKinnon R (2017) Structures of the human HCN1 hyperpolarization-activated channel. Cell 168(111–120):e11

    Google Scholar 

  11. Noreng S, Bharadwaj A, Posert R et al (2018) Structure of the human epithelial sodium channel by cryo-electron microscopy. elife 2018(7):e39340

    Article  Google Scholar 

  12. Singh AK, Saotome K, Luke L et al (2018) Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB. Nat Commun 9:2465

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hunter M, Yuan P, Vavilala D et al (2019) Optimization of protein expression in mammalian cells. Curr Protoc Protein Sci 9:e77

    Article  Google Scholar 

  14. Estes S, Melville M (2014) Mammalian cell line developments in speed and efficiency. Adv Biochem Eng Biotechnol 139:11–33

    CAS  PubMed  Google Scholar 

  15. Walsh G (2014) Biopharmaceutical benchmarks. Nat Biotechnol 32:992–1000

    Article  CAS  PubMed  Google Scholar 

  16. Lu P, Bai X-C, Ma D et al (2014) Three-dimensional structure of human gamma-secretase. Nature 512:166–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller PS, Aricescu AR (2014) Crystal structure of a human GABAA receptor. Nature 512:270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Su Q, Hu F, Ge X et al (2018) Structure of the human PKD1-PKD2 complex. Science 361:eaat9819

    Article  PubMed  Google Scholar 

  19. Li X, Wang J, Coutavas E et al (2016) Structure of human Niemann-Pick C1 protein. Proc Natl Acad Sci U S A 113:8212–8217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Inoue M, Sakuta N, Watanabe S et al (2019) Structural basis of sarco/endoplasmic reticulum Ca(2+)-ATPase 2b regulation via transmembrane helix interplay. Cell Re 27:1221–1230. e3

    Article  CAS  Google Scholar 

  21. Fraley R, Subramani P, Berg P et al (1980) Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem 255(21):10431–10435

    Article  CAS  PubMed  Google Scholar 

  22. Boussif O, Lezoualc’h F, Znata MA et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Longo PA, Kavran JM, Kim M-S et al (2013) Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 529:227–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goehring A, Lee C-H, Wang KH et al (2014) Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat Protoc 9:2574–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reeves PJ, Callewaert N, Contreras R et al (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 99:13419–13424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tom R, Bisson L, Durocher Y (2008) Transfection of adherent HEK293-EBNA1 cells in a six-well plate with branched PEI for production of recombinant proteins. CSH Protoc pdb prot4978

    Google Scholar 

  27. Nettleship JE, Watson PJ, Rhaman-Huq N et al (2015) Transient expression in HEK 293 cells: an alternative to E. coli for the production of secreted and intracellular mammalian proteins. Methods Mol Biol 1258:209–222

    Article  CAS  PubMed  Google Scholar 

  28. Chaudhary S, Pak JE, Pedersen BP et al (2011) Efficient expression screening of human membrane proteins in transiently transfected Human Embryonic Kidney 293S cells. Methods 55:273–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ooi A, Wong A, Esau L et al (2016) A guide to transient expression of membrane proteins in HEK-293 cells for functional characterization. Front Physiol 7:300

    Article  PubMed  PubMed Central  Google Scholar 

  30. Portolano N, Watson PJ, Firall L et al (2014) Recombinant protein expression for structural biology in HEK 293F suspension cells: a novel and accessible approach. J Vis Exp 92:e51897

    Google Scholar 

  31. Subedi GP, Watson RW, Moniz H et al (2015) High yield expression of recombinant human proteins with the transient transfection of HEK293 cells in suspension. J Vis Exp 106:e53568

    Google Scholar 

  32. Elegheert J, Behiels E, Bishop B et al (2018) Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat Protoc 13:2991–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan X, Li Z, Huang X et al (2019) Molecular basis for pore blockade of human Na(+) channel Nav1.2 by the mu-conotoxin KIIIA. Science 363:1309–1313

    Article  CAS  PubMed  Google Scholar 

  34. Yang G, Zhou R, Zhou Q et al (2019) Structural basis of Notch recognition by human gamma-secretase. Nature 565:192–197

    Article  CAS  PubMed  Google Scholar 

  35. Zhou R, Yang G, Guo X et al (2019) Recognition of the amyloid precursor protein by human gamma-secretase. Science 363:eaaw0930

    Article  CAS  PubMed  Google Scholar 

  36. Alam A, Kung R, Kowal J et al (2018) Structure of a zosuquidar and UIC2-bound human-mouse chimeric ABCB1. Proc Natl Acad Sci U S A 115:E1973–E1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alam A, Kowal J, Broude E et al (2019) Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 363:753–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sambrook JF, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd ed, Vols 1, 2 and 3, Cold Spring Harbor Laboratory Press. 1, 2 and 3: p 1–2100

    Google Scholar 

  39. Fan S, Maguire CA, Ramirez SH et al (2005) Valproic acid enhances gene expression from viral gene transfer vectors. J Virol Methods 125:23–33

    Article  CAS  PubMed  Google Scholar 

  40. Lin MY, de Zeote MR, van Putten JP et al (2015) Redirection of epithelial immune responses by short-chain fatty acids through inhibition of histone deacetylases. Front Immunol 6:554

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by Instruct-ULTRA (Coordination and Support Action Number ID 731005) funded by the EU H2020 framework to further develop the services of Instruct-ERIC and the Wellcome Trust Grants 202892/Z/16/Z (Membrane Protein Laboratory) and 090532/Z/09/Z (Wellcome Human Genetics Centre).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Owens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Krasnoselska, G.O. et al. (2021). Transient Transfection and Expression of Eukaryotic Membrane Proteins in Expi293F Cells and Their Screening on a Small Scale: Application for Structural Studies. In: Owens, R.J. (eds) Structural Proteomics. Methods in Molecular Biology, vol 2305. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1406-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1406-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1405-1

  • Online ISBN: 978-1-0716-1406-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics