Skip to main content

Computational Methods for the Elucidation of Protein Structure and Interactions

  • Protocol
  • First Online:
Structural Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2305))

Abstract

Biologists are increasingly aware of the importance of protein structure in revealing function. The computational tools now exist which allow researchers to model unknown proteins simply on the basis of their primary sequence. However, for the non-specialist bioinformatician, there is a dazzling array of terminology, acronyms, and competing computer software available for this process. This review is intended to highlight the key stages of computational protein structure prediction, as well as explain the reasons behind some of the procedures and list some established workarounds for common pitfalls. Thereafter follows a review of five one-stop servers for start-to-finish structure prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rangwala H, Karypis G (2010) Introduction to protein structure prediction. In: Rangwala, Karypis (eds) Introduction to protein structure prediction: methods and algorithms. John Wiley & Sons

    Google Scholar 

  2. Cao R, Bhattacharya D, Adhikari B, Li J, Cheng J (2015) Large-scale model quality assessment for improving protein tertiary structure prediction. Bioinformatics 31(12):i116–i123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McGuffin LJ, Adiyaman R, Maghrabi A et al (2019) IntFOLD: an integrated web resource for high performance protein structure and function prediction. Nucleic Acids Res 47:W408–W413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Article  CAS  Google Scholar 

  6. El-Gebali S et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432

    Article  CAS  PubMed  Google Scholar 

  7. Andreeva A, Howorth D, Chothia C et al (2014) SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res 42:D310–D314

    Article  CAS  PubMed  Google Scholar 

  8. Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, Orengo CA, Sillitoe I (2017) CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res 45(D1):D289–D295

    Article  CAS  PubMed  Google Scholar 

  9. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  10. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  PubMed  Google Scholar 

  11. Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–W394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McGuffin LJ (2010) Model quality prediction. In: Rangwala, Karypis (eds) Introduction to protein structure prediction: methods and algorithms. John Wiley & Sons

    Google Scholar 

  13. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  PubMed  Google Scholar 

  14. Zahn-Zabal M, Michel PA, Gateau A, Nikitin F et al (2020) The neXtProt knowledgebase in 2020: data, tools and usability improvements. Nucleic. Acids Res 48(D1):D328–D334

    CAS  Google Scholar 

  15. Szklarczyk D, Gable A, Lyon D et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  16. Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buenavista M, Roche D, McGuffin LJ (2012) Improvement of 3D protein models using multiple templates guided by single-template model quality assessment. Bioinformatics 28:1851–1857

    Article  CAS  PubMed  Google Scholar 

  18. Guo J, Ellrott K, Xu Y (2008) A historical perspective of template-based protein structure prediction. In: Zaki, Bystroff (eds) Protein structure prediction, 2nd edition, methods in molecular biology, vol 413. Springer

    Google Scholar 

  19. de Oliveira HP, Shi J, Deane C et al (2015) Building a better fragment library for de novo protein structure prediction. PLoS One 10:e0123998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McGuffin LJ, Shuid AN, Kempster R et al (2018) Accurate template-based modeling in CASP12 using the IntFOLD4-TS, ModFOLD6, and ReFOLD methods. Proteins 86:335–344

    Article  CAS  PubMed  Google Scholar 

  22. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Webb B, Sali A (2016) Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics 54, John Wiley & Sons, Inc.:5.6.1–5.6.37

    Article  Google Scholar 

  24. Wang Z, Eickholt J, Cheng J (2010) MULTICOM: a multi-level combination approach to protein structure prediction and its assessments in CASP8. Bioinformatics 26:882–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wallner B, Elofsson A (2005) Pcons5: combining consensus, structural evaluation and fold recognition scores. Bioinformatics 21:4248–4254

    Article  CAS  PubMed  Google Scholar 

  26. Yachdav G, Kloppmann E, Kajan L et al (2014) PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42:W337–W343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma J, Wang S, Zhao F, Xu J (2013) Protein threading using context-specific alignment potential. Bioinformatics (Proceedings of ISMB 2013) 29(13):i257–i265

    CAS  Google Scholar 

  28. Park H, Kim D, Ovchinnikov S, Baker D (2018) Automatic structure prediction of oligomeric assemblies using Robetta in CASP 12. Proteins 86:283–291

    Article  CAS  PubMed  Google Scholar 

  29. Simons K, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268:209–225

    Article  CAS  PubMed  Google Scholar 

  30. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  32. Sievers F, Wilm A, Dineen DG et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  33. Madeira F, Park YM, Lee J et al (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zimmermann L, Stephens A, Nam SZ et al (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430(15):2237–2243

    Article  CAS  PubMed  Google Scholar 

  35. Moult J (2005) A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol 15:285–289

    Article  CAS  PubMed  Google Scholar 

  36. Adiyaman R, McGuffin LJ (2019) Methods for the refinement of protein structure 3D models. Int J Mol Sci 20:2301

    Article  CAS  PubMed Central  Google Scholar 

  37. McGuffin LJ, Roche DB (2010) Rapid model quality assessment for protein structure predictions using the comparison of multiple models without structural alignments. Bioinformatics 26:182–188

    Article  CAS  PubMed  Google Scholar 

  38. Uziela K, Shu N, Wallner B, Elofsson A (2016) ProQ3: improved model quality assessments using Rosetta energy terms. Sci Rep 6:33509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350

    Article  CAS  PubMed  Google Scholar 

  40. Feig M (2017) Computational protein structure refinement: almost there, yet still so far to go. Wiley Interdiscip Rev Comput Mol Sci 7:e1307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Heo L, Feig M (2018) PREFMD: a web server for protein structure refinement via molecular dynamics simulations. Bioinformatics 34:1063–1065

    Article  CAS  PubMed  Google Scholar 

  42. Feig M (2016) Local protein structure refinement via molecular dynamics simulations with locPREFMD. J Chem Inf Model 56:1304–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heo L, Park H, Seok C (2013) GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 41:384–388

    Article  Google Scholar 

  44. Rodrigues JPGLM, Levitt M, Chopra G (2012) KoBaMIN: a knowledge-based minimization web server for protein structure refinement. Nucleic Acids Res 40:323–328

    Article  CAS  Google Scholar 

  45. Khoury GA, Smadbeck J, Kieslich CA et al (2017) Princeton_TIGRESS 2.0: high refinement consistency and net gains through support vector machines and molecular dynamics in double-blind predictions during the CASP11 experiment. Proteins Struct Funct Bioinform 85:1078–1098

    Article  CAS  Google Scholar 

  46. Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101:2525–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhattacharya D, Cheng J (2013) 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins 81:119–131

    Article  CAS  PubMed  Google Scholar 

  48. Shuid AN, Kempster R, McGuffin LJ (2017) ReFOLD: a server for the refinement of 3D protein models guided by accurate quality estimates. Nucleic Acids Res 45:W422–W428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang J, Liang Y, Zhang Y (2011) Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure 19:1784–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dosztányi Z (2018) Prediction of protein disorder based on IUPred. Protein Sci 27:331–340

    Article  PubMed  CAS  Google Scholar 

  51. Jones DT, Cozzetto D (2015) DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31:857–863

    Article  CAS  PubMed  Google Scholar 

  52. Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35:W460–W464

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jones DT, Taylor WR, Thornton JM (1992) A new approach to protein fold recognition. Nature 358:86–89

    Article  CAS  PubMed  Google Scholar 

  54. Lobley A, Sadowski MI, Jones DT (2009) pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 25:1761–1767

    Article  CAS  PubMed  Google Scholar 

  55. Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang Y, Faraggi E, Zhao H, Zhou Y (2011) Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of the query and corresponding native properties of templates. Bioinformatics 27:2076–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Skolnick J, Zhou H (2017) Why is there a glass ceiling for threading based protein structure prediction methods? J Phys Chem B 121:3546–3554

    Article  CAS  PubMed  Google Scholar 

  58. Wang C, Zhang H, Zheng W-M et al (2015) FALCON@home: a high-throughput protein structure prediction server based on remote homologue recognition. Bioinformatics 32:462–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80:1715–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hutson M (2019). AI protein-folding algorithms solve structures faster than ever. Deep learning makes its mark on protein-structure prediction. In: Nature NEWS, ISSN 1476–4687. https://www.nature.com/articles/d41586-019-01357-6. Accessed 31 Oct 2019

  61. Greener J, Kandathil S, Jones D (2019) Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints. Nat Commun 10:3977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Nealon J, Philomina L, McGuffin L (2017) Predictive and experimental approaches for elucidating protein–protein interactions and quaternary structures. Int J Mol Sci 18:2623

    Article  PubMed Central  CAS  Google Scholar 

  63. Moult J et al (1995) A large-scale experiment to assess protein structure prediction methods. Proteins 23:ii–iv

    Article  CAS  PubMed  Google Scholar 

  64. Moult J, Fidelis K, Kryshtafovych A, Tramontano A (2011) Critical assessment of methods of protein structure prediction (CASP)—round IX. Proteins 79(Suppl 10):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moult J, Fidelis K, Kryshtafovych A et al (2014) Critical assessment of methods of protein structure prediction (CASP) — round x. Proteins 82:1–6

    Article  CAS  PubMed  Google Scholar 

  66. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:W310–W314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pierce BG, Wiehe K, Hwang H et al (2014) ZDOCK server: interactive docking prediction of protein-ProteinComplexes and symmetric multimers. Bioinformatics 30:1771–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hayashi T, Matsuzaki Y, Yanagisawa K et al (2018) MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions. BMC Bioinformatics 19:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Garzon JI, Lopéz-Blanco JR, Pons C et al (2009) FRODOCK: a new approach for fast rotational protein-protein docking. Bioinformatics 25:2544–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Macindoe G, Mavridis L, Venkatraman V et al (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38:W445–W449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peterson LX, Kim H, Esquivel-Rodriguez J et al (2017) Human and server docking prediction for CAPRI round 30-35 using LZerD with combined scoring functions. Proteins 85:513–527

    Article  CAS  PubMed  Google Scholar 

  73. Vajda S, Yueh C, Beglov D et al (2017) New additions to the ClusPro server motivated by CAPRI. Proteins 85:435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vangone A, Rodrigues JP, Xue LC et al (2017) Sense and simplicity in HADDOCK scoring: lessons from CASP-CAPRI round 1. Proteins 85:417–423

    Article  CAS  PubMed  Google Scholar 

  75. Lensink M, Velankar S, Kryshtafovych A et al (2016) Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment. Proteins 84(Suppl 1):323–348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lafita A, Bliven S, Kryshtafovych A et al (2018) Assessment of protein assembly prediction in CASP12. Proteins 86:1–399

    Article  CAS  Google Scholar 

  77. Nakamura T, Oda T, Fukasawa Y, Tomii K (2018) Template-based quaternary structure prediction of proteins using enhanced profile-profile alignments. Proteins 86(Suppl 1):274–282

    Article  CAS  PubMed  Google Scholar 

  78. Bertoni M, Kiefer F, Biasini M et al (2017) Modelling protein quaternary structure of homo- and heterooligomers beyond binary interactions by homology. Sci Rep 7:10480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Tung C-H, Chen C-W, Guo R-C et al (2016) QuaBingo: a prediction system for protein quaternary structure attributes using block composition. Biomed Res Int 2016:9480276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam J. McGuffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Edmunds, N.S., McGuffin, L.J. (2021). Computational Methods for the Elucidation of Protein Structure and Interactions. In: Owens, R.J. (eds) Structural Proteomics. Methods in Molecular Biology, vol 2305. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1406-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1406-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1405-1

  • Online ISBN: 978-1-0716-1406-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics